Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM researchers identify genes that influence hippocampal volume

16.04.2012
An international team of researchers led by Boston University School of Medicine (BUSM) has identified four loci that appear to be associated with decreasing the volume of the hippocampus.

The hippocampus is the region of the brain that plays an important role in the formation of specific, new memories, which is an ability that patients with Alzheimer's disease lose. The findings may have broad implications in determining how age, Alzheimer's disease and other diseases impact the function and integrity of the hippocampus.

Sudha Seshadri, MD, professor of neurology at BUSM, is a senior author of the study, which will be published online in Nature Genetics.

Previous research has shown that the hippocampus is one of the brain regions involved with short and long-term memory processes and that it shrinks with age. It also is one of the first regions to exhibit damage from Alzheimer's disease, which can cause memory problems and disorientation.

... more about:
»BUSM »Framingham »brain aging »risk factor

"One of the problems with studying the genetics of a disease like Alzheimer's, which becomes symptomatic later in life, is that many people die of other causes before they reach the age at which they might have manifested the clinical dementia associated with the disease," said Seshadri. "To get around this issue, we have been studying the genetics of traits that we know are associated with a high future risk of Alzheimer's disease but that can be measured in everyone, often 10 to 20 years before the age when most persons develop clinical symptoms."

The potential genetic traits are called endophenotypes, and hippocampal volume is one such trait. The hippocampus shrinks before and during the progression of Alzheimer's disease, but other factors, such as vascular risk factors and normal aging, also lead to the decrease in size.

"Our research team wanted to pinpoint the genetic causes of changes in the hippocampal volume in a sample of apparently normal older persons," said Seshadri.

The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium allowed the researchers to gather data on hippocampal volume from 9,232 people who did not have dementia. They identified four genetic loci, including seven genes in or near these loci that appear to determine hippocampal volume.

The results show that if one of the genes is altered, the hippocampus is, on average, the same size as that of a person four to five years older. These results were replicated in two large European samples that included a mixed-age sample that included some participants with cognitive impairment.

"The findings indicate that these loci may have broad implications for determining the integrity of the hippocampus across a range of ages and cognitive capacities," said Seshadri. One of the genes identified by the researchers was also shown to play a role in memory performance in a different data sample.

The identified genetic associations indicate that certain genes could influence cell death by apoptosis, brain development and neuronal movement during brain development, and oxidative stress. Additionally, the researchers found that the genes play a role in ubiquitination, which is a process by which damaged proteins are removed, whereas other genes code for enzymes targeted by new diabetes medications.

"Future studies need to further explore these genetic regions in order to better understand the role of these genes in determining hippocampal volume," added Seshadri.

One of the largest cohorts involved in the study was the Framingham Heart Study cohort, affiliated with BUSM. Seshadri is a Senior Investigator at the Framingham Heart Study.

"Such important research would not be possible without the ongoing dedication of the Framingham study participants, which now span three generations and six decades," said Seshadri.

This study was funded primarily through the National Institute on Aging.

Jenny Eriksen | EurekAlert!
Further information:
http://www.bmc.org

Further reports about: BUSM Framingham brain aging risk factor

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>