Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM researchers identify genes that influence hippocampal volume

16.04.2012
An international team of researchers led by Boston University School of Medicine (BUSM) has identified four loci that appear to be associated with decreasing the volume of the hippocampus.

The hippocampus is the region of the brain that plays an important role in the formation of specific, new memories, which is an ability that patients with Alzheimer's disease lose. The findings may have broad implications in determining how age, Alzheimer's disease and other diseases impact the function and integrity of the hippocampus.

Sudha Seshadri, MD, professor of neurology at BUSM, is a senior author of the study, which will be published online in Nature Genetics.

Previous research has shown that the hippocampus is one of the brain regions involved with short and long-term memory processes and that it shrinks with age. It also is one of the first regions to exhibit damage from Alzheimer's disease, which can cause memory problems and disorientation.

... more about:
»BUSM »Framingham »brain aging »risk factor

"One of the problems with studying the genetics of a disease like Alzheimer's, which becomes symptomatic later in life, is that many people die of other causes before they reach the age at which they might have manifested the clinical dementia associated with the disease," said Seshadri. "To get around this issue, we have been studying the genetics of traits that we know are associated with a high future risk of Alzheimer's disease but that can be measured in everyone, often 10 to 20 years before the age when most persons develop clinical symptoms."

The potential genetic traits are called endophenotypes, and hippocampal volume is one such trait. The hippocampus shrinks before and during the progression of Alzheimer's disease, but other factors, such as vascular risk factors and normal aging, also lead to the decrease in size.

"Our research team wanted to pinpoint the genetic causes of changes in the hippocampal volume in a sample of apparently normal older persons," said Seshadri.

The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium allowed the researchers to gather data on hippocampal volume from 9,232 people who did not have dementia. They identified four genetic loci, including seven genes in or near these loci that appear to determine hippocampal volume.

The results show that if one of the genes is altered, the hippocampus is, on average, the same size as that of a person four to five years older. These results were replicated in two large European samples that included a mixed-age sample that included some participants with cognitive impairment.

"The findings indicate that these loci may have broad implications for determining the integrity of the hippocampus across a range of ages and cognitive capacities," said Seshadri. One of the genes identified by the researchers was also shown to play a role in memory performance in a different data sample.

The identified genetic associations indicate that certain genes could influence cell death by apoptosis, brain development and neuronal movement during brain development, and oxidative stress. Additionally, the researchers found that the genes play a role in ubiquitination, which is a process by which damaged proteins are removed, whereas other genes code for enzymes targeted by new diabetes medications.

"Future studies need to further explore these genetic regions in order to better understand the role of these genes in determining hippocampal volume," added Seshadri.

One of the largest cohorts involved in the study was the Framingham Heart Study cohort, affiliated with BUSM. Seshadri is a Senior Investigator at the Framingham Heart Study.

"Such important research would not be possible without the ongoing dedication of the Framingham study participants, which now span three generations and six decades," said Seshadri.

This study was funded primarily through the National Institute on Aging.

Jenny Eriksen | EurekAlert!
Further information:
http://www.bmc.org

Further reports about: BUSM Framingham brain aging risk factor

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>