Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM researchers find potential key to halt progression, reverse damage from emphysema

03.09.2012
A study led by researchers at Boston University School of Medicine (BUSM) has shown that a compound used in some skin creams may halt the progression of emphysema and reverse some of the damage caused by the disease.

When the compound Gly-His-Lys (GHK) was applied to lung cells from patients with emphysema, normal gene activity in altered cells was restored and damaged aspects of cellular function were repaired.

The study, which is published in BioMed Central's open access journal Genome Medicine, also demonstrates the potential impact of using genomic technologies to identify new possible treatments for diseases using existing drugs and compounds.

Chronic obstructive pulmonary disease (COPD) is a chronic, progressive lung disease that comprises emphysema, small airway obstruction and/or chronic bronchitis leading to the loss of lung function. Tobacco smoke and other irritants cause oxidative stress and chronic inflammation, which over time destroys lung alveolar cells and results in emphysema. Without these cells, the lungs are not able to efficiently exchange oxygen for carbon dioxide, causing shortness of breath and low blood oxygen levels. According to the National Institutes of Health's National Heart, Lung and Blood Institute (NHLBI), COPD is the third leading cause of death in the United States and results in approximately 120,000 deaths each year. While there are treatments and lifestyle changes that can help people cope with COPD, there currently is no cure and there are no effective therapies to reduce the rate of lung function decline that occurs as the disease progresses.

"Given the high costs, both direct and indirect, associated with COPD, there is an urgent need to identify novel approaches to treat the disease," said Avrum Spira, MD, MSc, Alexander Graham Bell professor of medicine and chief of the division of computational biomedicine at BUSM, who was one of the study's senior leaders. Spira also is a physician in the pulmonary, critical care and allergy department at Boston Medical Center.

Researchers took cells from lungs donated by patients undergoing a double lung transplant because their lungs were irrevocably damaged by COPD and found 127 genes had changes in activity as disease severity increased within the lung. The genes that showed increased activity included several that are associated with inflammation, such as those involved in signalling to B-cells (the immune system cells that make antibodies).

In contrast, the genes involved in maintaining cellular structure and normal cellular function, along with the growth factors TGFâ and VEGF, were down-regulated and showed decreased activity. Genes that control the ability of the cells to stick together (cell adhesion), produce the protein matrix that normally surrounds the cells and promote the normal association between lung cells and blood vessels were among the genes in this category.

Using genomic technologies and computational methods, the researchers identified genetic activity defects that occur as emphysema progresses and matched these defects with compounds that could reverse the damage. "Our study results showed that the way genes were affected by the compound GHK, a drug identified in the 1970s, was the complete opposite of the pattern we had seen in the cells damaged by emphysema," said Marc Lenburg, PhD, associate professor in computational biomedicine and bioinformatics at BUSM and one of the study's senior authors.

"What got us especially excited was that previous studies had shown that GHK could accelerate wound repair when applied to the skin," said Joshua Campbell, PhD, a post-doctoral fellow working with Spira and Lenburg who served as the study's first author. "This made us think that GHK could have potential as a therapy for COPD."

"When we tested GHK on cells from the damaged lungs of smokers with COPD, we saw an improvement in the structure of their actin cytoskeleton and in cell adhesion, especially to collagen," said James Hogg, MD, from the University of British Columbia and one of the study's senior authors. "GHK also restored the ability of cells to reorganize themselves to repair wounds and construct the contractile filaments essential for alveolar tissue repair."

GHK is a natural peptide found in human plasma, but the amount present decreases with age. While more testing needs to be done on its effects in COPD, these early results are very promising. Therapeutic studies with GHK in animal models of COPD are now underway with the ultimate goal of moving this compound into clinical trials. As more gene activity signatures are discovered, this method of matching drug to disease may provide a rapid method for discovering potential uses for existing drugs and compounds.

"Beyond the identification of a potential new COPD drug, the research team developed a cost-effective approach to study COPD at the molecular level across the entire lung, and then screen potential drug candidates," said James Kiley, PhD, director of the NHLBI's Division of Lung Diseases, who supported this work. "This work demonstrates the potential of using genomics data to drive clinical research."

Research reported in this published article was supported by the NHLBI under award number R01 HL095388 and through the National Institutes of Health under award number UL1 TR000157 (Boston University Clinical and Translational Science Institute). Researchers from the University of British Columbia, the University Medical Center Groningen and the University of Pennsylvania also collaborated on this study.

*Some material included in this press release was excerpted from Genome Medicine's press release: http://www.biomedcentral.com/presscenter/pressreleases/20120831a

Jenny Eriksen | EurekAlert!
Further information:
http://www.bmc.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>