Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Built-in-billboards: Male bluefin killifish signal different things with different fins

21.10.2014

They help fish swim, but fins also advertise a fish’s social standing and health. In a new study, researchers report that for the male bluefin killifish (Lucania goodei), each colorful fin presents its own messages to other fish. Researchers report their findings in the journal Behavioral Ecology.

They’re called “bluefin” killifish, but the first thing University of Illinois animal biology professor Rebecca Fuller noticed while she was snorkeling in a Florida stream was the killifishes’ differently colored fins. In addition to having reflective skin, the males sometimes had red, yellow and/or black markings on their anal, caudal (tail) and dorsal fins.


Photo by L. Brian Stauffer ; graphic by Julie McMahon

The pigment melanin contributes to the black edges (b) on the anal fin that are a sign of dominance, while pterins account for the red and yellow colors (a) on the anal fin, and signal health. Carotenoids on the caudal fin (c) indicate that the fish is eating well. Brighter, more-intense colors are associated with better mating success.

“In some of the males, the anal fin was yellow, and then some of them were red,” she said. “And the field guide showed them as blue.”

Some of the males had darker black markings on their anal fins than others, and some had bright yellow or orange tailfins.

Fuller immediately wanted to know what was driving the variation.

Previous studies suggested that melanin, the black pigment, is a badge of status among males; those with more prominent melanin markings tend to be more aggressive towards other males. In the new study, Fuller and her former graduate student Ashley Johnson, found that males with heavier melanin outlines on their anal fins dominated: They were more aggressive with other males – driving them off to gain exclusive access to females.

“Melanin is a signal to other males: ‘I’ve been winning in the past and I'm doing well and get out of my way,’” Fuller said.

The red and yellow pigments on the anal fins and the yellow tints on the tailfins have different origins, the researchers found. Carotenoids color the tailfins, but another class of pigments, called pterins, tint the anal fins either yellow or red. Yellow and red pterins are tied to differences in a single gene, Fuller said.

Carotenoids (the same pigments that give carrots and apricots their color) are known antioxidants; they gobble up highly reactive ions or molecules that can damage cells and tissues. Because killifish obtain carotenoids only by eating, researchers hypothesize that a display of color derived from carotenoids signals to potential mates that they are gazing upon a particularly robust, well-fed individual.

In the new study, Fuller and Johnson discovered that richer carotenoid coloration on the tailfin was associated with better body condition, lower parasite infection and good spawning success. This suggests that females respond positively to the brightly pigmented tailfins of potential mates, Fuller said.

Much less is known about pterins, she said. They are associated with immune function and also have antioxidant characteristics, and so also may be a badge of health.

In the new study, the researchers found that the pterin and carotenoid color patterns were independent of one another: Carotenoids colored only the tailfin, while pterins appeared only on the anal fin. Brighter pterin coloration was associated with lower parasite infection and higher spawning success, the researchers found.

“We are finding that communication is complicated in nature and that animals have evolved ways to send different messages to different receivers,” Fuller said. “In the case of bluefin killifish, multiple messages are being provided by three distinct pigments that are in three different areas of the body. Both females and males are getting these messages. Males are paying attention to the melanin, most likely, and females are paying attention to these more-colorful fins.”

The National Science Foundation Division of Environmental Biology and the U. of I. provided funding for this study.

Diana Yates | Eurek Alert!
Further information:
http://news.illinois.edu/news/14/1020fishfins_rebeccafuller.html

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>