Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building new connections

20.04.2009
Two newly discovered proteins may offer a breakthrough in understanding the function of an enigmatic network of protein fibers

Cells are crisscrossed by microtubules, protein cables that provide infrastructure, which facilitate cellular migration and assist in transport of molecular cargo, among other functions.

Most microtubules radiate out from structures known as centrosomes, but many cells also contain non-centrosomal microtubules of ambiguous function that are anchored to yet-unknown cellular targets.

For example, in epithelia—cell sheets that compose tissues including the skin and digestive tract—evidence has suggested that microtubules may interact with adherens junctions (AJs), protein complexes that connect epithelial cells together. “However, it was not clearly understood whether and how microtubules were involved in AJ formation,” says Masatoshi Takeichi, of the RIKEN Center for Developmental Biology in Kobe.

Fortunately, a new study by Takeichi’s team, including lead author Wenxiang Meng, offers some illumination. The researchers were looking for interacting partners for p120-catenin, a protein that participates in formation of the zonula adherens (ZA)—bands of AJs that encircle epithelial cells, reinforcing their shape and linking them tightly into two-dimensional sheets.

Their search led to the identification of PLEKHA7 and Nezha, two novel proteins that appear to provide the ‘missing link’ between the ZA and the microtubule network1. Nezha binds to PLEKHA7, which interacts directly with p120, and both Nezha and PLEKHA7 localize to the ZA, where they appear to play an important role in maintaining its integrity.

Meng and Takeichi subsequently found that Nezha interacts directly with non-centrosomal microtubules. Every microtubule has a defined ‘minus’ and ‘plus’ end, with fiber growth occurring exclusively taking place at the latter. Nezha binds specifically to microtubule minus ends, enabling further extension at the plus end, and this association seems to play an essential part in enabling PLEKHA7-Nezha stabilization of the ZA.

Although the details of microtubule involvement in the ZA are still unclear, the researchers uncovered a promising lead when they identified a motor protein, KIFC3, which travels along microtubules towards PLEKHA7-Nezha-associated junctions. “Minus-end directed motors like KIFC3 may utilize these microtubules as a ‘rail’ to transport cargo necessary to maintain the ZA,” says Takeichi.

These findings raise many new questions, but also represent major progress in cell biology, confirming the involvement of microtubules in maintenance of cell-cell junctions and revealing factors that help mediate this function. “To my knowledge, Nezha is the first non-centrosomal protein shown to tether the microtubule minus-ends,” says Takeichi. “These findings are thus a breakthrough for our deeper understanding of the dynamics and biological roles of non-centrosomal microtubules.”

Reference

1. Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135, 948–959 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Cell Adhesion and Tissue Patterning

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/687/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>