Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building new connections

20.04.2009
Two newly discovered proteins may offer a breakthrough in understanding the function of an enigmatic network of protein fibers

Cells are crisscrossed by microtubules, protein cables that provide infrastructure, which facilitate cellular migration and assist in transport of molecular cargo, among other functions.

Most microtubules radiate out from structures known as centrosomes, but many cells also contain non-centrosomal microtubules of ambiguous function that are anchored to yet-unknown cellular targets.

For example, in epithelia—cell sheets that compose tissues including the skin and digestive tract—evidence has suggested that microtubules may interact with adherens junctions (AJs), protein complexes that connect epithelial cells together. “However, it was not clearly understood whether and how microtubules were involved in AJ formation,” says Masatoshi Takeichi, of the RIKEN Center for Developmental Biology in Kobe.

Fortunately, a new study by Takeichi’s team, including lead author Wenxiang Meng, offers some illumination. The researchers were looking for interacting partners for p120-catenin, a protein that participates in formation of the zonula adherens (ZA)—bands of AJs that encircle epithelial cells, reinforcing their shape and linking them tightly into two-dimensional sheets.

Their search led to the identification of PLEKHA7 and Nezha, two novel proteins that appear to provide the ‘missing link’ between the ZA and the microtubule network1. Nezha binds to PLEKHA7, which interacts directly with p120, and both Nezha and PLEKHA7 localize to the ZA, where they appear to play an important role in maintaining its integrity.

Meng and Takeichi subsequently found that Nezha interacts directly with non-centrosomal microtubules. Every microtubule has a defined ‘minus’ and ‘plus’ end, with fiber growth occurring exclusively taking place at the latter. Nezha binds specifically to microtubule minus ends, enabling further extension at the plus end, and this association seems to play an essential part in enabling PLEKHA7-Nezha stabilization of the ZA.

Although the details of microtubule involvement in the ZA are still unclear, the researchers uncovered a promising lead when they identified a motor protein, KIFC3, which travels along microtubules towards PLEKHA7-Nezha-associated junctions. “Minus-end directed motors like KIFC3 may utilize these microtubules as a ‘rail’ to transport cargo necessary to maintain the ZA,” says Takeichi.

These findings raise many new questions, but also represent major progress in cell biology, confirming the involvement of microtubules in maintenance of cell-cell junctions and revealing factors that help mediate this function. “To my knowledge, Nezha is the first non-centrosomal protein shown to tether the microtubule minus-ends,” says Takeichi. “These findings are thus a breakthrough for our deeper understanding of the dynamics and biological roles of non-centrosomal microtubules.”

Reference

1. Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135, 948–959 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Cell Adhesion and Tissue Patterning

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/687/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>