Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building new connections

20.04.2009
Two newly discovered proteins may offer a breakthrough in understanding the function of an enigmatic network of protein fibers

Cells are crisscrossed by microtubules, protein cables that provide infrastructure, which facilitate cellular migration and assist in transport of molecular cargo, among other functions.

Most microtubules radiate out from structures known as centrosomes, but many cells also contain non-centrosomal microtubules of ambiguous function that are anchored to yet-unknown cellular targets.

For example, in epithelia—cell sheets that compose tissues including the skin and digestive tract—evidence has suggested that microtubules may interact with adherens junctions (AJs), protein complexes that connect epithelial cells together. “However, it was not clearly understood whether and how microtubules were involved in AJ formation,” says Masatoshi Takeichi, of the RIKEN Center for Developmental Biology in Kobe.

Fortunately, a new study by Takeichi’s team, including lead author Wenxiang Meng, offers some illumination. The researchers were looking for interacting partners for p120-catenin, a protein that participates in formation of the zonula adherens (ZA)—bands of AJs that encircle epithelial cells, reinforcing their shape and linking them tightly into two-dimensional sheets.

Their search led to the identification of PLEKHA7 and Nezha, two novel proteins that appear to provide the ‘missing link’ between the ZA and the microtubule network1. Nezha binds to PLEKHA7, which interacts directly with p120, and both Nezha and PLEKHA7 localize to the ZA, where they appear to play an important role in maintaining its integrity.

Meng and Takeichi subsequently found that Nezha interacts directly with non-centrosomal microtubules. Every microtubule has a defined ‘minus’ and ‘plus’ end, with fiber growth occurring exclusively taking place at the latter. Nezha binds specifically to microtubule minus ends, enabling further extension at the plus end, and this association seems to play an essential part in enabling PLEKHA7-Nezha stabilization of the ZA.

Although the details of microtubule involvement in the ZA are still unclear, the researchers uncovered a promising lead when they identified a motor protein, KIFC3, which travels along microtubules towards PLEKHA7-Nezha-associated junctions. “Minus-end directed motors like KIFC3 may utilize these microtubules as a ‘rail’ to transport cargo necessary to maintain the ZA,” says Takeichi.

These findings raise many new questions, but also represent major progress in cell biology, confirming the involvement of microtubules in maintenance of cell-cell junctions and revealing factors that help mediate this function. “To my knowledge, Nezha is the first non-centrosomal protein shown to tether the microtubule minus-ends,” says Takeichi. “These findings are thus a breakthrough for our deeper understanding of the dynamics and biological roles of non-centrosomal microtubules.”

Reference

1. Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell 135, 948–959 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Cell Adhesion and Tissue Patterning

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/687/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>