Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a full-scale model of a trapped oil reservoir in a laboratory

08.11.2011
Getting trapped oil out of porous layers of sandstone and limestone is a tricky and costly operation for energy exploration companies the world over.

But now, University of Alberta researchers have developed a way to replicate oil-trapping rock layers in a laboratory and show energy producers the best way to recover every last bit of oil from these reservoirs.

Mechanical engineering professor Sushanta Mitra led a research team that uses core samples from oil drilling sites to make 3-D mathematical models of the porous rock formations that can trap huge quantities of valuable oil.

The process starts with a tiny chip of rock from a core sample where oil has become trapped, That slice of rock is scanned by a Focused Ion Beam-Scanning Electron Microscopy machine, which produces a 3-D copy of the porous rock. The replica is made of a thin layer of silicon and quartz at Nanofab, the U of A's micro/nanofabrication facility.

The researchers call the finished product a "reservoir on a chip", or ROC.

The hugely expensive process of recovering oil in the field is recreated right in our laboratory.. Theresearchers soak the ROC in oil and then water, which is under pressure, is forced into the chip to see how much oil can be pushed through the microscopic channels and recovered.

ROC replicas can be made from core samples from oil-trapping rock anywhere in the world. "Oil exploration companies will be able to use ROC technology to determine what concentration of water and chemicals they'll need to pump into layers of sandstone or limestone to maximize oil recovery," said Mitra.

The research findings were published in the journal Lab Chip, a publication of the Royal Society of Chemistry.

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>