Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a full-scale model of a trapped oil reservoir in a laboratory

08.11.2011
Getting trapped oil out of porous layers of sandstone and limestone is a tricky and costly operation for energy exploration companies the world over.

But now, University of Alberta researchers have developed a way to replicate oil-trapping rock layers in a laboratory and show energy producers the best way to recover every last bit of oil from these reservoirs.

Mechanical engineering professor Sushanta Mitra led a research team that uses core samples from oil drilling sites to make 3-D mathematical models of the porous rock formations that can trap huge quantities of valuable oil.

The process starts with a tiny chip of rock from a core sample where oil has become trapped, That slice of rock is scanned by a Focused Ion Beam-Scanning Electron Microscopy machine, which produces a 3-D copy of the porous rock. The replica is made of a thin layer of silicon and quartz at Nanofab, the U of A's micro/nanofabrication facility.

The researchers call the finished product a "reservoir on a chip", or ROC.

The hugely expensive process of recovering oil in the field is recreated right in our laboratory.. Theresearchers soak the ROC in oil and then water, which is under pressure, is forced into the chip to see how much oil can be pushed through the microscopic channels and recovered.

ROC replicas can be made from core samples from oil-trapping rock anywhere in the world. "Oil exploration companies will be able to use ROC technology to determine what concentration of water and chemicals they'll need to pump into layers of sandstone or limestone to maximize oil recovery," said Mitra.

The research findings were published in the journal Lab Chip, a publication of the Royal Society of Chemistry.

Brian Murphy | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>