Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Building a beetle antifreeze

An Alaskan beetle beats the cold using an unusual, natural antifreeze with a novel mode of action that scientists are beginning to unravel

Animals and plants have evolved all sorts of chemical tricks that allow them to colonize extreme environments. For species that call Antarctica or the Arctic home, surviving sub-zero temperatures is an essential ability, and chemists have isolated many natural antifreeze compounds from these organisms.

A computer-generated image of the beetle antifreeze xylomannan reveals that one face bristles with oxygen atoms (red), forming a polar surface that helps it to cling to ice crystals. Copyright : 2012 Yukishige Ito

The antifreeze called xylomannan, which is produced by the freeze-tolerant Alaskan beetle Upis ceramboides, is being studied by Akihiro Ishiwata and Yukishige Ito at the RIKEN Advanced Science Institute at Wako and their colleagues. Their findings to date show that xylomannan is a particularly unusual antifreeze.

Xylomannan was first reported in 2009, and has been shown to be amongst the most active insect antifreezes found to date. Antifreeze compounds, which are also known as thermal hysteresis factors (THFs), protect the insects’ cells from damage as temperatures fall and ice crystals begin to form. THFs seem to work by sticking to the surface of nascent ice crystals and somehow stopping them from growing, protecting nearby cell membranes from being punctured by needles of ice.

The unusual thing about xylomannan is its constituents. Every natural THF isolated to date is protein based, but xylomannan is a glycan, a long-chain sugar-based compound. “Xylomannan is the first example of a THF biomolecule with little or no protein component,” says Ishiwata. “Its mode of action is not entirely clear, but it should be different to those of common THFs such as antifreeze proteins and glycoproteins.”

To confirm the proposed structure of xylomannan, so that they can begin to study how it interacts with ice crystals, Ishiwata, Ito and their colleagues synthesized what they thought to be a key component of the compound’s sugar-based backbone. Their structural analysis, using nuclear magnetic resonance techniques and molecular modeling, confirmed that the structure matches that of the natural compound. It also hints at the way that xylomannan might stick to ice crystals: one face of xylomannan is much more polar than the other face, making one face hydrophilic and the other hydrophobic..

“We propose that the hydrophilic phase of xylomannan might bind to the ice crystal, exposing the hydrophobic phase on the ice crystal’s surface,” says Ishiwata. This hydrophobic surface should repel water molecules away from the ice crystal, stopping it from growing any further. “However, the binding mode is still not clear from our structural analysis,” he adds. To test the theory further, the team now plans to synthesize longer fragments of xylomannan to examine their ice-binding ability.

The corresponding author for this highlight is based at the Synthetic Cellular Chemistry Laboratory, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>