Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs Might Convert Biodiesel Waste Into New Fuel

26.01.2011
A strain of bacteria found in soil is being studied for its ability to convert waste from a promising alternative fuel into several useful materials, including another alternative fuel.

A graduate student at The University of Alabama in Huntsville is developing biological tools to make products from crude glycerol -- a waste material from the production of biodiesel. The research is being funded by the National Science Foundation.

Disposing of glycerol has been a problem for the biodiesel industry, according to Keerthi Venkataramanan, a student in UAHuntsville's biotechnology Ph.D. program. "Many companies have had problems disposing of it. The glycerol you get as a byproduct isn't pure, so it can't be used in cosmetics or animal feeds. And purifying it costs three times as much as the glycerol is worth."

The volume of glycerol produced is also daunting: About 100,000 gallons of glycerol is produced with every million gallons of biodiesel manufactured from animal fats or vegetable oils. (In 2009 more than 500 million gallons of biodiesel were produced in the U.S. while more than 2.75 billion gallons were produced in Europe.)

Two major American companies "were made to close biodiesel plants in Europe because they couldn't dispose of their crude glycerol," Venkataramanan said.

He is working with the Clostidium pasteurianum bacteria, which "eats" glycerol and produces several potentially useful byproducts.

"This strain is found deep in the soil," he said. "It was originally studied for its ability to 'fix' nitrogen from the air.”

The bacteria uses glycerol as a carbohydrate source. From that they produce three alcohol byproducts -- butanol, propanediol and ethanol -- plus acetic acid and butyric acid. Butanol is a particularly interesting byproduct.

"Butanol is a big alcohol molecule, twice as big as ethanol," Venkataramanan said. "You can use it as an industrial solvent and it can be used in cars, replacing gasoline with no modifications. It doesn't have some of the problems you have with ethanol, such as rapid evaporation. And ethanol is a two-carbon molecule, but butanol is a four-carbon molecule so its energy value is much higher. In fact, there are plans to use it for jet fuel.

"You can also get butanol from crude oil, but this biological process is less polluting."

In their present form, the bacteria convert about 30 to 35 percent of their gylcerol meals into butanol and another 25 to 30 percent into a chemical used to make plastics.

Venkataramanan is looking at different strategies to improve that yield. He is also studying the bacteria's genes to see if a more productive strain can be bioengineered.

Other groups in the U.S. and abroad are studying a variety of fungi, bacteria and algae for glycerol conversion, but Venkataramanan says his strain has several advantages. Some of the bacteria being studied are dangerous pathogens, while Clostidium pasteurianum "is a completely non-pathogenic strain," he said. "An accidental release is not a big deal. You get it from the soil, so if you spill any you're putting it back in the soil."

Ray Garner | Newswise Science News
Further information:
http://www.uah.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>