Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs Might Convert Biodiesel Waste Into New Fuel

26.01.2011
A strain of bacteria found in soil is being studied for its ability to convert waste from a promising alternative fuel into several useful materials, including another alternative fuel.

A graduate student at The University of Alabama in Huntsville is developing biological tools to make products from crude glycerol -- a waste material from the production of biodiesel. The research is being funded by the National Science Foundation.

Disposing of glycerol has been a problem for the biodiesel industry, according to Keerthi Venkataramanan, a student in UAHuntsville's biotechnology Ph.D. program. "Many companies have had problems disposing of it. The glycerol you get as a byproduct isn't pure, so it can't be used in cosmetics or animal feeds. And purifying it costs three times as much as the glycerol is worth."

The volume of glycerol produced is also daunting: About 100,000 gallons of glycerol is produced with every million gallons of biodiesel manufactured from animal fats or vegetable oils. (In 2009 more than 500 million gallons of biodiesel were produced in the U.S. while more than 2.75 billion gallons were produced in Europe.)

Two major American companies "were made to close biodiesel plants in Europe because they couldn't dispose of their crude glycerol," Venkataramanan said.

He is working with the Clostidium pasteurianum bacteria, which "eats" glycerol and produces several potentially useful byproducts.

"This strain is found deep in the soil," he said. "It was originally studied for its ability to 'fix' nitrogen from the air.”

The bacteria uses glycerol as a carbohydrate source. From that they produce three alcohol byproducts -- butanol, propanediol and ethanol -- plus acetic acid and butyric acid. Butanol is a particularly interesting byproduct.

"Butanol is a big alcohol molecule, twice as big as ethanol," Venkataramanan said. "You can use it as an industrial solvent and it can be used in cars, replacing gasoline with no modifications. It doesn't have some of the problems you have with ethanol, such as rapid evaporation. And ethanol is a two-carbon molecule, but butanol is a four-carbon molecule so its energy value is much higher. In fact, there are plans to use it for jet fuel.

"You can also get butanol from crude oil, but this biological process is less polluting."

In their present form, the bacteria convert about 30 to 35 percent of their gylcerol meals into butanol and another 25 to 30 percent into a chemical used to make plastics.

Venkataramanan is looking at different strategies to improve that yield. He is also studying the bacteria's genes to see if a more productive strain can be bioengineered.

Other groups in the U.S. and abroad are studying a variety of fungi, bacteria and algae for glycerol conversion, but Venkataramanan says his strain has several advantages. Some of the bacteria being studied are dangerous pathogens, while Clostidium pasteurianum "is a completely non-pathogenic strain," he said. "An accidental release is not a big deal. You get it from the soil, so if you spill any you're putting it back in the soil."

Ray Garner | Newswise Science News
Further information:
http://www.uah.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>