Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Bugs without borders

Researchers track the emergence and global spread of healthcare associated Clostridium difficile

Researchers show that the global epidemic of Clostridium difficile 027/NAP1/BI in the early to mid-2000s was caused by the spread of two different but highly related strains of the bacterium rather than one as was previously thought. The spread and persistence of both epidemics were driven by the acquisition of resistance to a frontline antibiotic.

Unlike many other healthcare-associated bacteria, C. difficile produces highly resistant and infectious spores. These spores can promote the transmission of C. difficile and potentially facilitates its spread over greater geographical distances, even across continents.

This study highlights the ease and rapidity with which the hospital bacterium, C. difficile, can spread throughout the world, emphasising the interconnectedness of the global healthcare system.

"Between 2002 and 2006, we saw highly publicised outbreaks of C. difficile in hospitals across the UK, USA, Canada and Europe," says Dr Miao He, first author from the Wellcome Trust Sanger Institute. "We used advanced DNA sequencing to determine the evolutionary history of this epidemic and the subsequent pattern of global spread.

"We found that this outbreak came from two separate epidemic strains or lineages of C. difficile, FQR1 and FQR2, both emerging from North America over a very short period and rapidly spread between hospitals around the world."

The team used the genetic history to map both epidemic strains of C. difficile using a global collection of samples from hospital patients between 1985 and 2010. They demonstrated that the two C. difficile strains acquired resistance to this antibiotic, fluoroquinolone, separately, a key genetic change that may have instigated the epidemics in the early 2000s.

"Up until the early 2000s, fluoroquinolone was an effective treatment for C. difficile infection," says Professor Brendan Wren, author from the London School of Hygiene and Tropical Medicine. "We've seen that since these strains acquired resistance to this frontline antibiotic, not only is it now virtually useless against this organism, but resistance seems to have been a major factor in the continued evolution and persistence of these strains in hospitals and clinical settings."

The team found the first outbreak strain of C. difficile, FQR1 originated in the USA and spread across the country. They also saw sporadic cases of this strain of C. difficile in Switzerland and South Korea. They found that the second strain of C. difficile, FQR2, originated in Canada and spread rapidly over a much wider area, spreading throughout North America, Australia and Europe.

The team showed that the spread of C. difficile into the UK was frequently caused by long-range geographical transmission event and then spread extensively within the UK. They confirmed separate transmission events to Exeter, Ayrshire and Birmingham from North America and a transmission event from continental Europe to Maidstone. These events triggered large-scale C. difficile outbreaks in many hospitals across the UK in the mid-2000s.

"We have exposed the ease and rapidity with which these fluoroquinolone-resistant C. difficile strains have transmitted across the world," says Dr Trevor Lawley, lead author from the Wellcome Trust Sanger Institute. "Our research highlights how the global healthcare system is interconnected and how we all need to work together when an outbreak such as this occurs.

"Our study heralds a new era of forensic microbiology for the transmission tracking of this major global pathogen and will now help us understand at the genetic level how and why this pathogen has become so aggressive and transmissible worldwide. This research will act as a database for clinical researchers to track the genomic changes in C. difficile outbreaks."

Aileen Sheehy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>