Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bugs without borders

10.12.2012
Researchers track the emergence and global spread of healthcare associated Clostridium difficile

Researchers show that the global epidemic of Clostridium difficile 027/NAP1/BI in the early to mid-2000s was caused by the spread of two different but highly related strains of the bacterium rather than one as was previously thought. The spread and persistence of both epidemics were driven by the acquisition of resistance to a frontline antibiotic.

Unlike many other healthcare-associated bacteria, C. difficile produces highly resistant and infectious spores. These spores can promote the transmission of C. difficile and potentially facilitates its spread over greater geographical distances, even across continents.

This study highlights the ease and rapidity with which the hospital bacterium, C. difficile, can spread throughout the world, emphasising the interconnectedness of the global healthcare system.

"Between 2002 and 2006, we saw highly publicised outbreaks of C. difficile in hospitals across the UK, USA, Canada and Europe," says Dr Miao He, first author from the Wellcome Trust Sanger Institute. "We used advanced DNA sequencing to determine the evolutionary history of this epidemic and the subsequent pattern of global spread.

"We found that this outbreak came from two separate epidemic strains or lineages of C. difficile, FQR1 and FQR2, both emerging from North America over a very short period and rapidly spread between hospitals around the world."

The team used the genetic history to map both epidemic strains of C. difficile using a global collection of samples from hospital patients between 1985 and 2010. They demonstrated that the two C. difficile strains acquired resistance to this antibiotic, fluoroquinolone, separately, a key genetic change that may have instigated the epidemics in the early 2000s.

"Up until the early 2000s, fluoroquinolone was an effective treatment for C. difficile infection," says Professor Brendan Wren, author from the London School of Hygiene and Tropical Medicine. "We've seen that since these strains acquired resistance to this frontline antibiotic, not only is it now virtually useless against this organism, but resistance seems to have been a major factor in the continued evolution and persistence of these strains in hospitals and clinical settings."

The team found the first outbreak strain of C. difficile, FQR1 originated in the USA and spread across the country. They also saw sporadic cases of this strain of C. difficile in Switzerland and South Korea. They found that the second strain of C. difficile, FQR2, originated in Canada and spread rapidly over a much wider area, spreading throughout North America, Australia and Europe.

The team showed that the spread of C. difficile into the UK was frequently caused by long-range geographical transmission event and then spread extensively within the UK. They confirmed separate transmission events to Exeter, Ayrshire and Birmingham from North America and a transmission event from continental Europe to Maidstone. These events triggered large-scale C. difficile outbreaks in many hospitals across the UK in the mid-2000s.

"We have exposed the ease and rapidity with which these fluoroquinolone-resistant C. difficile strains have transmitted across the world," says Dr Trevor Lawley, lead author from the Wellcome Trust Sanger Institute. "Our research highlights how the global healthcare system is interconnected and how we all need to work together when an outbreak such as this occurs.

"Our study heralds a new era of forensic microbiology for the transmission tracking of this major global pathogen and will now help us understand at the genetic level how and why this pathogen has become so aggressive and transmissible worldwide. This research will act as a database for clinical researchers to track the genomic changes in C. difficile outbreaks."

Aileen Sheehy | EurekAlert!
Further information:
http://www.sanger.ac.uk

More articles from Life Sciences:

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

nachricht New map may lead to drug development for complex brain disorders, USC researcher says
25.07.2017 | University of Southern California

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>