Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Buck Institute and Biotica Investigate Polyketides in Extension of Healthy Lifespan

15.09.2011
The Buck Institute for Research on Aging (Novato, CA) and Biotica Technology Ltd. (Cambridge, UK) today announced a three-year collaboration to investigate polyketides in diseases of aging.

Building on observations that rapamycin extends healthy lifespan in various species (Kaeberlein & Kennedy; Nature 2009), the collaborators will evaluate rapamycin analogs and other polyketides in a broad range of age-related disease models to identify novel therapeutics.

“We welcome this collaboration with Biotica with great enthusiasm. Their polyketides represent some of the most novel and promising drug leads for the development of therapeutics for age-related disease,” said Buck Institute CEO and President Brian Kennedy, PhD, who added that several Buck laboratories will be involved in the screening process. “We look forward to working with Biotica to move potential therapeutics toward commercialization. We have great respect for the company and their technology - the fact that we will both benefit from commercialization of new discoveries is a harbinger of great things to come.”

“Prof. Kennedy and the Buck Institute are recognized as leaders in research on aging, and have played a key role in identifying the life-extending properties of rapamycin,” commented Barrie Wilkinson, PhD, Biotica’s VP of Research. “We’re extremely fortunate to be working with the Buck’s outstanding investigators, and to have access to their diverse range of scientific approaches to age-related disease.”

The collaboration builds upon an existing relationship between Prof. Kennedy and Biotica, studying longevity-enhancing properties of non-rapamycin polyketides. The recent return of Biotica’s rapamycin analog program from Pfizer, in August 2011, has created an opportunity to add value in addition to its current focus on multiple sclerosis (MS) and systemic lupus erythematosus (SLE). In addition to the work on rapamycin analogs, the collaborators expect to identify new polyketides with therapeutic potential in age-related disease.

About the Buck Institute for Research on Aging
The Buck Institute is the first freestanding institute in the United States that is devoted solely to basic research on aging and age-associated disease. The Institute is an independent nonprofit organization dedicated to extending the healthspan, the healthy years of each individual’s life. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating conditions such as Alzheimer’s and Parkinson’s disease, cancer, cardiovascular disease and stroke. Collaborative research at the Institute is supported by new developments in genomics, proteomics and bioinformatics technology. For additional information visit www.buckinstitute.org.
About Biotica Technology Limited
Biotica is a privately-held biotechnology company that discovers and develops polyketide therapeutics. It has a growing pipeline of novel therapeutic programs supported by clinical validation. These include nPT-mTOR (unique rapamycin analogs), nPT-CyP (cyclophilin inhibitors for HCV) and nPT-ery (anti-inflammatory erythromycin analogs partnered with GlaxoSmithKline). All of Biotica’s projects employ its proprietary novoPT™ technology, which enables it to select from the many known polyketides with biological activity and make a range of derivatives that are either difficult or impossible to make by medicinal chemistry methods. For additional information visit www.biotica.com.

Kris Rebillot | Newswise Science News
Further information:
http://www.buckinstitute.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>