Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Buck Institute and Biotica Investigate Polyketides in Extension of Healthy Lifespan

15.09.2011
The Buck Institute for Research on Aging (Novato, CA) and Biotica Technology Ltd. (Cambridge, UK) today announced a three-year collaboration to investigate polyketides in diseases of aging.

Building on observations that rapamycin extends healthy lifespan in various species (Kaeberlein & Kennedy; Nature 2009), the collaborators will evaluate rapamycin analogs and other polyketides in a broad range of age-related disease models to identify novel therapeutics.

“We welcome this collaboration with Biotica with great enthusiasm. Their polyketides represent some of the most novel and promising drug leads for the development of therapeutics for age-related disease,” said Buck Institute CEO and President Brian Kennedy, PhD, who added that several Buck laboratories will be involved in the screening process. “We look forward to working with Biotica to move potential therapeutics toward commercialization. We have great respect for the company and their technology - the fact that we will both benefit from commercialization of new discoveries is a harbinger of great things to come.”

“Prof. Kennedy and the Buck Institute are recognized as leaders in research on aging, and have played a key role in identifying the life-extending properties of rapamycin,” commented Barrie Wilkinson, PhD, Biotica’s VP of Research. “We’re extremely fortunate to be working with the Buck’s outstanding investigators, and to have access to their diverse range of scientific approaches to age-related disease.”

The collaboration builds upon an existing relationship between Prof. Kennedy and Biotica, studying longevity-enhancing properties of non-rapamycin polyketides. The recent return of Biotica’s rapamycin analog program from Pfizer, in August 2011, has created an opportunity to add value in addition to its current focus on multiple sclerosis (MS) and systemic lupus erythematosus (SLE). In addition to the work on rapamycin analogs, the collaborators expect to identify new polyketides with therapeutic potential in age-related disease.

About the Buck Institute for Research on Aging
The Buck Institute is the first freestanding institute in the United States that is devoted solely to basic research on aging and age-associated disease. The Institute is an independent nonprofit organization dedicated to extending the healthspan, the healthy years of each individual’s life. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating conditions such as Alzheimer’s and Parkinson’s disease, cancer, cardiovascular disease and stroke. Collaborative research at the Institute is supported by new developments in genomics, proteomics and bioinformatics technology. For additional information visit www.buckinstitute.org.
About Biotica Technology Limited
Biotica is a privately-held biotechnology company that discovers and develops polyketide therapeutics. It has a growing pipeline of novel therapeutic programs supported by clinical validation. These include nPT-mTOR (unique rapamycin analogs), nPT-CyP (cyclophilin inhibitors for HCV) and nPT-ery (anti-inflammatory erythromycin analogs partnered with GlaxoSmithKline). All of Biotica’s projects employ its proprietary novoPT™ technology, which enables it to select from the many known polyketides with biological activity and make a range of derivatives that are either difficult or impossible to make by medicinal chemistry methods. For additional information visit www.biotica.com.

Kris Rebillot | Newswise Science News
Further information:
http://www.buckinstitute.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>