Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brushes in 3D

12.06.2013
Complex three-dimensional polymer brush nanostructures from photopolymerization

Polymer brushes are polymers in which individual polymer chains stand side by side on a surface, causing the chains to stick out like bristles on a brush.



In the journal Angewandte Chemie, American scientists have now presented a new simple method for making three-dimensional nanostructures in a controlled fashion from polymer brushes.

There are a wide variety of current and future applications for polymer brushes. For example, a coating of polymer brushes on a plastic surface such as an artificial heart valve or a dialysis machine can hinder the adsorption of proteins onto the surface. It can also be used in the fabrication of next-generation microelectronic devices. Other areas of application include biocompatible coatings for implants, chemical sensors, and new “intelligent” materials.

Although progress has been made with regard to new brush structures, current methods do not offer sufficient temporal and spatial control over the growth process. Usually, a self-organized monolayer of an initiator is assembled on a substrate and the polymer chains can grow out from there.

In order to obtain specific patterns, the initiator must be applied to the substrate in a corresponding pattern—a complex undertaking that is not manufacturable and does not allow for the generation of complex three-dimensional structures.

Craig J. Hawker and a team from the University of California, Santa Barbara, and The Dow Chemical Company (Midland, Michigan) have developed a new method that allows for the formation of brushes on a uniform initiator layer with both spatial and temporal control. Their simple method is based on a light-activated radical polymerization. The length of the bristles at any given location depends only on the duration and intensity of the local irradiation.

To form a specific structure, conventional photomasks can be used. These have openings in the areas to be irradiated and shield the other areas from the light. This allows for the formation of extensive patterns with submicrometer resolution in one step. All of this is made possible by a special iridium-based photocatalyst. It remains active for only a very short time after irradiation, so it cannot travel very far into nonirradiated areas while in its active state. It is even possible to use a grayscale photomask with continuously increasing opacity to produce gradated patterns.

Another advantage of this new method is that newly incorporated monomers are always added to the chain adjacent to the initiator, meaning that the initiator remains at the forward end of the growing chain. Because it is not destroyed as in other methods, and remains available at the right position, the polymerization can be stopped and restarted at any time. In this way the mask being used can be exchanged as often as desired. It is even possible to vary the monomer being used during the process. The complexity of accessible structures and applications is thus almost unlimited.

About the Author
Dr. Craig Hawker is the Alan and Ruth Heeger Professor of Interdisciplinary Studies at UCSB, and Director of the Dow Materials Institute and the California Nanosystems Institute. He is well known in the field of polymeric materials and has been honored with election as a Fellow of the Royal Society and the 2013 ACS Award in Polymer Chemistry.
Author: Craig J. Hawker, University of Califormia, Santa Barbara (USA), http://hawkergroup.mrl.ucsb.edu/craig-j-hawker
Title: Fabrication of Complex Three-Dimensional Polymer Brush Nanostructures through Light-Mediated Living Radical Polymerization

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301845

Craig J. Hawker | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>