Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown biologist solves mystery of tropical grasses' origin

09.02.2010
Around 30 to 40 million years ago, grasses on Earth underwent an epic evolutionary upheaval. An assemblage capitalized on falling levels of atmospheric carbon dioxide by engineering an internal mechanism to concentrate the dwindling CO2 supply that, like a fuel-injection system in a car, could more efficiently convert sunlight and nutrients into energy.

The rise of C4 grasses is not disputed. They dominate in hot, tropical climes and now make up to 20 percent of our planet's vegetational covering. Scientists have pinned the rise of C4 plants primarily to dwindling concentrations of CO2.

But C4 grasses have been closely linked with warmer temperatures. Indeed, on a map, C4 grasses are found along tropical gradients, while C3 grasses occupy the northern, or colder, end of the temperature gradient. Considering knowledge of their past and their current distribution, what was left to question?

Everything, apparently, according to Erika Edwards, an evolutionary biologist at Brown University. In a paper published online in the Proceedings of the National Academy of Sciences, Edwards and Stephen Smith, a postdoctoral researcher at the National Evolutionary Synthesis Center in North Carolina, have found that rainfall — not temperature — was the primary trigger for C4 grasses' evolutionary beginnings. Moreover, the pair say C4 grasses were already in tropical forests before moving out of the shade of the taller trees and into drier, sunnier environments.

"We've kind of changed the story a bit," said Edwards, assistant professor of biology.

The paper is important, Smith said, because it "demonstrates the importance of precipitation in the evolution of grasses and particularly in the evolution of C4 grasses — specifically, their movement into drier, not necessarily warmer climates."

To arrive at their findings, the biologists compiled a database of roughly 1.1 million specimens of grasses collected by botanists worldwide. They mapped the locations for these species and then added global precipitation and temperature charts.

"By combining all these data," Edwards said, "we could get individual climate profiles for each grass species."

The pair then went a step further. They whittled the list to approximately 1,230 species for which the plants' genes had been sequenced and from there built a phylogenetic profile for the collection, the most comprehensive evolutionary tree to date for grasses. The reason for building the phylogeny, Edwards said, was to tease out the junctures at which C3 and C4 grasses diverged over time. The scientists zeroed in on 21 such "transition nodes" and examined the climatic conditions during those branching periods.

They found that in 18 of the 21 instances, precipitation, rather than temperature, had changed. "That was the clincher," Edwards said.

Looking more closely at the differences in rainfall, Edwards and Smith noticed the shifts in the amount of rainfall between C3 and C4 grasses in the tropics dictated in sharp relief how the different lineages evolved. Generally speaking, C3 grasses flourished in areas that received, on average, 1,800 millimeters (71 inches) of rain annually; C4 grasses took root in areas that received, on average, 1,200 millimeters (47 inches) of rain annually.

"Twelve-hundred millimeters isn't a desert," Edwards noted. "It's still a fairly mesic place. And so when you start looking at climate profiles, these closely related C3 and C4 lineages are straddling this transition zone between tropical forests and tropical woodlands and savanna."

So, did C4 grasses evolve in the tropical forest and then move out from the canopy or did they move out first and then adopt a different photosynthetic pathway? Edwards isn't sure, but she thinks the pathway may have begun to form with C3 grasses on the forest margins, where those plants would have been subjected to greater fluctuations in precipitation, sunlight, temperature and other environmental stresses, spurring the photosynthetic innovation.

What that all means for the future of C4 grasses and climate change is an open question. While the grasses would presumably benefit from projections of lower mean rainfall in some areas of the tropics, they may be less competitive with rising levels of atmospheric CO2. Also, the effects of changes in land through deforestation and other practices would need to be considered, Edwards said.

In a related finding, the scientists attempt to explain the dominance of a lineage of C3 grasses, called Pooideae, in northern, cold areas of the globe, such as the Mongolian steppes. "The global latitudinal gradients of C3 and C4 always has been explained by the physiological advantages that C4 grasses have under high temperatures," Edwards explained. "No one has considered that the evolution of cold tolerance might have been equally important in setting up that latitudinal gradient. Climatically speaking, the cool-climate Pooideae are really the grasses that are doing something very different."

"It highlights the apparently important role that cold tolerance has played for the evolution of non-C4 grasses and especially the group Pooideae, which includes rye, barley, and wheat and many of the other grasses in the temperate and boreal habitats," Smith said.

Richard Lewis | EurekAlert!
Further information:
http://www.Brown.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>