Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown biologist solves mystery of tropical grasses' origin

09.02.2010
Around 30 to 40 million years ago, grasses on Earth underwent an epic evolutionary upheaval. An assemblage capitalized on falling levels of atmospheric carbon dioxide by engineering an internal mechanism to concentrate the dwindling CO2 supply that, like a fuel-injection system in a car, could more efficiently convert sunlight and nutrients into energy.

The rise of C4 grasses is not disputed. They dominate in hot, tropical climes and now make up to 20 percent of our planet's vegetational covering. Scientists have pinned the rise of C4 plants primarily to dwindling concentrations of CO2.

But C4 grasses have been closely linked with warmer temperatures. Indeed, on a map, C4 grasses are found along tropical gradients, while C3 grasses occupy the northern, or colder, end of the temperature gradient. Considering knowledge of their past and their current distribution, what was left to question?

Everything, apparently, according to Erika Edwards, an evolutionary biologist at Brown University. In a paper published online in the Proceedings of the National Academy of Sciences, Edwards and Stephen Smith, a postdoctoral researcher at the National Evolutionary Synthesis Center in North Carolina, have found that rainfall — not temperature — was the primary trigger for C4 grasses' evolutionary beginnings. Moreover, the pair say C4 grasses were already in tropical forests before moving out of the shade of the taller trees and into drier, sunnier environments.

"We've kind of changed the story a bit," said Edwards, assistant professor of biology.

The paper is important, Smith said, because it "demonstrates the importance of precipitation in the evolution of grasses and particularly in the evolution of C4 grasses — specifically, their movement into drier, not necessarily warmer climates."

To arrive at their findings, the biologists compiled a database of roughly 1.1 million specimens of grasses collected by botanists worldwide. They mapped the locations for these species and then added global precipitation and temperature charts.

"By combining all these data," Edwards said, "we could get individual climate profiles for each grass species."

The pair then went a step further. They whittled the list to approximately 1,230 species for which the plants' genes had been sequenced and from there built a phylogenetic profile for the collection, the most comprehensive evolutionary tree to date for grasses. The reason for building the phylogeny, Edwards said, was to tease out the junctures at which C3 and C4 grasses diverged over time. The scientists zeroed in on 21 such "transition nodes" and examined the climatic conditions during those branching periods.

They found that in 18 of the 21 instances, precipitation, rather than temperature, had changed. "That was the clincher," Edwards said.

Looking more closely at the differences in rainfall, Edwards and Smith noticed the shifts in the amount of rainfall between C3 and C4 grasses in the tropics dictated in sharp relief how the different lineages evolved. Generally speaking, C3 grasses flourished in areas that received, on average, 1,800 millimeters (71 inches) of rain annually; C4 grasses took root in areas that received, on average, 1,200 millimeters (47 inches) of rain annually.

"Twelve-hundred millimeters isn't a desert," Edwards noted. "It's still a fairly mesic place. And so when you start looking at climate profiles, these closely related C3 and C4 lineages are straddling this transition zone between tropical forests and tropical woodlands and savanna."

So, did C4 grasses evolve in the tropical forest and then move out from the canopy or did they move out first and then adopt a different photosynthetic pathway? Edwards isn't sure, but she thinks the pathway may have begun to form with C3 grasses on the forest margins, where those plants would have been subjected to greater fluctuations in precipitation, sunlight, temperature and other environmental stresses, spurring the photosynthetic innovation.

What that all means for the future of C4 grasses and climate change is an open question. While the grasses would presumably benefit from projections of lower mean rainfall in some areas of the tropics, they may be less competitive with rising levels of atmospheric CO2. Also, the effects of changes in land through deforestation and other practices would need to be considered, Edwards said.

In a related finding, the scientists attempt to explain the dominance of a lineage of C3 grasses, called Pooideae, in northern, cold areas of the globe, such as the Mongolian steppes. "The global latitudinal gradients of C3 and C4 always has been explained by the physiological advantages that C4 grasses have under high temperatures," Edwards explained. "No one has considered that the evolution of cold tolerance might have been equally important in setting up that latitudinal gradient. Climatically speaking, the cool-climate Pooideae are really the grasses that are doing something very different."

"It highlights the apparently important role that cold tolerance has played for the evolution of non-C4 grasses and especially the group Pooideae, which includes rye, barley, and wheat and many of the other grasses in the temperate and boreal habitats," Smith said.

Richard Lewis | EurekAlert!
Further information:
http://www.Brown.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>