Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brown adipose tissue made transparent


Brown adipose tissue has played a key role in prevention research since its presence was first documented in adults. However, there was no non-invasive method of measuring its heat generation. A team at the Technical University Munich (TUM) and the Helmholtz Zentrum München has now succeeded in making the activity of brown adipose tissue visible without injecting substances.

In the cold, brown adipose tissue acts like a heat generator, and its activity has a positive effect on the energy balance. The heat output of brown adipose tissue in humans decreases with increasing age. It is also less active in diabetics and obese persons. Therefore, scientists are researching the factors which keep the brown adipose tissue active. Because it is able to burn energy from carbohydrates and fat, it is of great interest for interventions against obesity and diabetes.

The new laser method MSOT represents brown fat.

Picture: Reber/ TUM

Until now, it has only been possible to measure the heat output of brown adipose tissue by means of invasive methods. This approach involves the injection of radioactive substances called "tracers" which participate in the metabolism, making it possible to observe the heat conversion in the tissue. However, a team from Helmholtz and the TUM has developed a new, non-invasive method. After establishing its viability in mice, the initial measurements in humans have also been successful without the need to inject imaging agents.

Laser method goes under the skin

The team of researchers demonstrated a relationship between the metabolic activation of the tissue and changes in oxygenated and deoxygenated hemoglobin (red blood pigment), measured by means of multispectral optoacoustic tomography (MSOT). Professor Vasilis Ntziachristos, Director of the Chair for Biological Imaging at TUM and the Institute of Biological and Medical Imaging at Helmholtz Zentrum München has pioneered MSOT explains the new investigative method as follows:

"A laser beam sends light pulses approximately two to three centimeters deep into the tissue. This light is absorbed by tissues containing hemoglobincausing them to minimally warm up and transiently expand. This expansion creates sound waves which can be measured."

The study demonstrated a direct relationship between the metabolic activation of the brown adipose tissue measured using hemoglobin gradients as an intrinsic biomarker of tissue metabolism and its calorie consumption after stimulation. “Overall we expect MSOT to become a key tool in measuring metabolic parameters in tissue, using portable and safe MSOT technology” notes Prof. Ntziachristos. He adds: “this ability can revolutionize understanding of metabolic processes not only in patients but also in healthy individuals”.

Markes for the tissue metabolism: blood flow and oxygen saturation

"The higher metabolic demand of the brown adipose tissue is supplied by increased blood circulation and oxygen utilization, which can be made visible in the tissue and the venous outflow by MSOT” explains Professor Martin Klingenspor from the Chair for Molecular Nutritional Medicine, one of the main authors of the study which was published in "Cell Metabolism." "This means that blood flow and changes in oxygen saturation in blood are markers for metabolic output."

MSOT can overall enable the investigation of an increased number of functional tissue parameters, beyond metabolism, including inflammation or angiogenesis. Overall it is expected that the combination of safe non-ionizing radiation and a portable format will enable novel applications of the technology in point-of-care and outpatient settings. A next step for the investigating team is to examine the accuracy of the technology in quantifying the effect of various medications in the active fat content of the human body.

Josefine Reber, Monja Willersh€auser, Angelos Karlas, Korbinian Paul-Yuan, Gael Diot, Daniela Franz, Tobias Fromme, Saak V. Ovsepian, Nicolas Beziere, Elena Dubikovskaya, Dimitrios C. Karampinos, Christina Holzapfel, Hans Hauner, Martin Klingenspor, and Vasilis Ntziachristos: Non-invasive Measurement of Brown Fat Metabolism Based on Optoacoustic Imaging of Hemoglobin Gradients, Cell Metabolism 03/2018.

Prof. Dr. Vasilis Ntziachristos
Technical University of Munich / Helmholtz Zentrum München
Chair for Biological Imaging

Prof. Dr. Martin Klingenspor
Technical University of Munich
Chair for Molecular Nutritional Medicine / Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ)
Phone: 0049/8161/71 2386

Weitere Informationen:


Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>