Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Broccoli & co.: mustard oils as chemical mace

Broccoli and other plants use mustard oils to ward off pests. These natural substances are also thought to have a preventive effect on cancer. A German-Danish team is now presenting new findings about mustard oils in plant science in “Nature” – with interesting prospects for agriculture.

Plants produce a large variety of substances that are often highly prized by humans, such as caffeine and essential oils. Many substances derived from plants add special flavors to meals, and quite a number are regarded as health-promoting. This also applies to mustard oils, which make mustard spicy and give brassicas their unique aroma.

When caterpillars or other hungry insects feed on glucosinolate-containing plants like broccoli, the glucosinolates get in contact with the enzyme myrosinase, that releases mustard oils. These ward off the insects. Picture: Dietmar Geiger

Mustard oils are reputed to be able to prevent cancer. There are various signs to support this notion. “For example, it is known that the constituents of broccoli kill off the bacterium Helicobacter pylori, which can trigger stomach ulcers and cancer,” says Professor Rainer Hedrich, plant scientist at the University of Würzburg.

Mustard oils as protection against enemies

Of course, plants do not synthesize such special constituents to protect humans. Instead, they use them to keep microbes and other enemies at bay. Often, they only use their chemical mace in an emergency. The pungent and spicy mustard oils, for instance, are only produced if the plant is injured, say, by an insect munching on it. Only then do the precursors of the mustard oils, the glucosinolates, come into contact with an enzyme that releases the mustard oils. This effect is familiar to anyone who has ever bitten into a radish.

Hungry insects tend to seek out the nutritious leaves and seeds. So, it is no wonder that the plant accumulates particularly large quantities of glucosinolates in these parts. The leaves can produce the deterrents themselves, but the maturing seeds cannot. “They have to import the glucosinolates, and this is not possible without special transport proteins,” says Professor Dietmar Geiger, plant physiologist at the University of Würzburg.

Prospects for agriculture

Until recently, virtually nothing was known about these vital transporters and their genes. But a research team from Copenhagen, Würzburg, and Madrid has now identified them. The results have been published in the journal “Nature”, giving them great prominence because they could have a far-reaching impact on agriculture.

Hedrich explains: “This paves the way for deliberately cultivating plants whose glucosinolate content and composition are tailored to the health of humans.” One such plant might be broccoli, optimized to combat the stomach bacterium Helicobacter.

How the results were attained

As the object of their analysis, the international research team used the plant Arabidopsis thaliana. Scientists know all there is to know about the genetic material of this model plant; it is also a “little sister” of cabbage, mustard, and rapeseed – it too contains glucosinolates and their transporters.

How did the scientists proceed? First of all, they applied a cellular biological approach. Using eggs from the South African clawed frog as a “test tube”, they conducted an assay to identify the genes needed to import and accumulate glucosinolates. In the end, the Danish team attributed this to two genes.

It was now the turn of the transporter specialists from Würzburg with their biophysical research methods – Professor Dietmar Geiger, in particular. They shed light on the mechanism that is used by these nanomachines sitting in the cell membrane to draw energy and transport the glucosinolates.

In the meantime, Barbara Ann Halkier from Copenhagen had isolated an Arabidopsis mutant in which neither transporter works: the plant had no glucosinolates whatsoever in its seeds. This proved that the researchers had indeed deciphered the genetic code and the function of the glucosinolate transporters that are so important to the survival of plants containing mustard oil.

The international research team

The team led by Professor Barbara Ann Halkier at the University of Copenhagen comprises experts in the field of glucosinolate metabolism. Professor Rainer Hedrich and Professor Dietmar Geiger from Würzburg are specialists in transport proteins in plants. The final member of this group of experts is former Würzburg plant scientist Ingo Dreyer, who is now a professor at the University of Madrid.

“NRT/PTR transporters essential for allocation of glucosinolate defense compounds to seeds”, Hussam Hassan Nour-Eldin, Tonni Grube Andersen, Meike Burow, Svend Roesen Madsen, Morten Egevang Jørgensen, Carl Erik Olsen, Ingo Dreyer, Rainer Hedrich, Dietmar Geiger, and Barbara Ann Halkier, Nature (2012), published online 05 august, DOI: 10.1038/nature11285


Prof. Dr. Rainer Hedrich, Department of Botany I (Molecular Plant Physiology and Biophysics) at the University of Würzburg, T +49 (0)931 31-86100,

Robert Emmerich | idw
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>