Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broader approach provides new insight into diabetes genes

03.09.2012
Using a new method, diabetes researchers at Lund University, Sweden, have been able to reveal more of the genetic complexity behind type 2 diabetes.
The new research findings have been achieved as a result of access to human insulin-producing cells from deceased donors and by not only studying one gene variant, but many genes and how they influence the level of the gene in pancreatic islets and their effect on insulin secretion and glucose control of the donor.

“With this approach, we can explain 25 per cent of variations in blood sugar levels. Previously, the best studies have explained less than three per cent”, says Leif Groop from Lund University Diabetes Centre, the principal author of the study, which has been published in the journal Cell Metabolism.

The findings of the study provide greater insight into why, in cases of type 2 diabetes, the insulin-producing beta cells cease to be able to perform their function of producing sufficient insulin to keep blood sugar levels under control.

“We have linked different gene variants to their effect on donated human beta cells and have compared cells from non-diabetics and diabetics”, says Professor Groop.

The research team had access to cells from 63 donors, nine of whom had had type 2 diabetes.

The starting point for the work was the 47 known gene variants that have a statistical link to diabetes.

“We used them as ‘bait’ to find new signal paths and chains of events where the 47 variants work together with other genes. We have to map patterns because a single gene rarely acts on its own”, explains Leif Groop.

Various criteria were used to sift out the 20 strongest gene variants. The criteria included a difference between beta cells from healthy individuals and diabetics and a link to insulin secretion and blood sugar levels. The majority of the 20 variants identified were not among the 47 known risk genes.

The central aim of the study is to understand why certain gene variants raise the risk of diabetes.

“By taking a new and more holistic approach, we have gone a step further than previous projects and succeeded in linking together gene variants and their signal paths in human beta cells that cause reduced insulin secretion. The next step is to look in more detail at the way in which the strongest genes affect insulin secretion”, says Leif Groop.

Contact: Professor Leif Groop, research team leader, tel.: +46 40 391202, mobile: +46 705 912548

Helga Ekdahl Heun | idw
Further information:
http://www.sciencedirect.com/science/article/pii/S1550413112002434

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>