Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Broader approach provides new insight into diabetes genes

03.09.2012
Using a new method, diabetes researchers at Lund University, Sweden, have been able to reveal more of the genetic complexity behind type 2 diabetes.
The new research findings have been achieved as a result of access to human insulin-producing cells from deceased donors and by not only studying one gene variant, but many genes and how they influence the level of the gene in pancreatic islets and their effect on insulin secretion and glucose control of the donor.

“With this approach, we can explain 25 per cent of variations in blood sugar levels. Previously, the best studies have explained less than three per cent”, says Leif Groop from Lund University Diabetes Centre, the principal author of the study, which has been published in the journal Cell Metabolism.

The findings of the study provide greater insight into why, in cases of type 2 diabetes, the insulin-producing beta cells cease to be able to perform their function of producing sufficient insulin to keep blood sugar levels under control.

“We have linked different gene variants to their effect on donated human beta cells and have compared cells from non-diabetics and diabetics”, says Professor Groop.

The research team had access to cells from 63 donors, nine of whom had had type 2 diabetes.

The starting point for the work was the 47 known gene variants that have a statistical link to diabetes.

“We used them as ‘bait’ to find new signal paths and chains of events where the 47 variants work together with other genes. We have to map patterns because a single gene rarely acts on its own”, explains Leif Groop.

Various criteria were used to sift out the 20 strongest gene variants. The criteria included a difference between beta cells from healthy individuals and diabetics and a link to insulin secretion and blood sugar levels. The majority of the 20 variants identified were not among the 47 known risk genes.

The central aim of the study is to understand why certain gene variants raise the risk of diabetes.

“By taking a new and more holistic approach, we have gone a step further than previous projects and succeeded in linking together gene variants and their signal paths in human beta cells that cause reduced insulin secretion. The next step is to look in more detail at the way in which the strongest genes affect insulin secretion”, says Leif Groop.

Contact: Professor Leif Groop, research team leader, tel.: +46 40 391202, mobile: +46 705 912548

Helga Ekdahl Heun | idw
Further information:
http://www.sciencedirect.com/science/article/pii/S1550413112002434

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>