Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bright lights for live cells

26.07.2010
Surface-selective fluorescent labeling enables cell tracking in the body while preserving initial cell function

Chemical reactions that create durable bonds between cells and fluorescent dyes are an attractive way to monitor biological functions in the body. However, they can also detrimentally modify key chemical groups on cell surfaces.

Chemically binding fluorescent dyes to cells—with minimal impact on their original function—is now possible, thanks to a site-selective reaction developed by a team led by Yasuyoshi Watanabe and Tsuyoshi Tahara from the RIKEN Center for Molecular Imaging Science, Kobe¹.

Working closely with Katsunori Tanaka and Koichi Fukase from Osaka University, the researchers decided to use organic compounds called aldehydes as dye precursors as they readily react with nitrogen-containing functionalities, or amino groups, exposed at protein surfaces.

To assess the efficacy of their method, the team mixed the aldehydes with brain cancer cells in vitro for 10 minutes then compared them with typical amino reactive dye precursors known as succinimidyl esters (NHS) (Fig. 1). They discovered that the aldehyde precursors produced brighter fluorescence than the NHS dyes.

Confocal microscopy showed that the aldehydes reacted with amino groups of lysine amino acid residues on the cell surface and those of other cell membrane components, whereas the NHS dyes penetrated the cells. They confirmed this by treating the labeled cells with detergent: the aldehyde-derived labels washed off the cell surface, whereas their NHS counterparts remained in the cells. The aldehyde-derived labels also remained effective at exceptionally low concentrations, unlike the NHS-derived labels.

“In contrast to pre-existing cell labeling protocols, this reaction tightly anchors the labels to the surface of living cells within 10 minutes at 10 nM [dye] concentrations and with a very simple ‘kit-like’ operation,” say Watanabe and Tahara. The team also observed that the brain cells maintained their ability to undergo cell division after labeling because of the mild reaction conditions.

The researchers also labeled lymphocytes, extracted from mice, with the fluorescent dyes and injected them into live mice for in vivo monitoring. They found that the labels clearly highlighted the trafficking of the cells into the organs of the mouse immune system. In particular, they noted that the cells gradually accumulated in the spleen and intestinal lymph nodes in six hours before disappearing from the spleen.

In addition to investigating potential clinical applications, the team is currently planning to apply their method to the synthesis of metal binding labels to introduce radioactive and magnetic properties into cells for imaging techniques such as positron emission tomography and magnetic resonance imaging.

The corresponding author for this highlight is based at the Molecular Probe Dynamics Laboratory, RIKEN Center for Molecular

Journal information
1. Tanaka, K., Minami, K., Tahara, T., Fujii, Y., Siwu, E.R.O, Nozaki, S., Hirotaka, O., Yokoi, S., Koyama, K., Watanabe, Y. & Fukase, K. Electrocyclization-based labeling allows efficient in vivo imaging of cellular trafficking. ChemMedChem 5, 841–845 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.rikenresearch.riken.jp/eng/research/6340
http://www.researchsea.com

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>