Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bright life on the ocean bed: Predators may even color code food

06.09.2012
Bioluminescence on the ocean bed and the creatures that see it

Sinking through the inky ocean, it would seem that there is little light at depth: but you'd be wrong. 'In the mesopelagic realm [200 m] bioluminescence [light produced by animals] is very common', says Sönke Johnsen from Duke University, USA, explaining that many creatures are capable of producing light, yet rarely do so. But how much light do the inhabitants of the ocean floor (benthos) generate?

Explaining that some bioluminescence is generated when organisms collide, Johnsen says, 'In the benthos you have a current moving over complicated ground with all the things in the water banging into it, so one idea was that there would be a fair amount of bioluminescence.' However, few people have visited this remote and inhospitable habitat. Intrigued by the animals that dwell there and the possibility that bioluminescent bacteria coating the ocean floor might glow faintly, long time collaborators Tamara Frank, Sonke Johnsen, Steven Haddock, Edith Widder and Charles Messing teamed up to find out just how much light is produced by seabed residents. The team discovered that bioluminescent animals are relatively rare but blue-green bioluminescence produced when plankton collide with obstacles is relatively common. They also found that deep-sea predators have incredibly sensitive colour vision and they publish their discoveries in a pair of papers in the Journal of Experimental Biology at http:/jeb.biologists.org.

Descending to the bottom of the ocean near the Bahamas in Harbor Branch Oceanographic's Johnson- Sea-Link submersible, switching off all the lights and adapting to the darkness, the group were amazed to find themselves continually surrounded by tiny flashes of light as bioluminescent plankton collided with coral and boulders strewn across the floor. However, there was no evidence of the all-pervasive glow produced by bioluminescent bacteria that the team had hoped to find. 'We weren't in regions where the currents were slow enough to allow for collection of detritus,' says Frank, adding, 'it's not that this phenomenon doesn't exist…we just weren't able to observe it on these dives.'

Next the submariners began searching for bioluminescent inhabitants, gently tapping coral, crabs and anything else they could reach with the submersible's robotic arm to see whether any of the organisms emitted light. The team found that only 20% of the species that they encountered produced bioluminescence (Johnsen et al. 2012). Collecting specimens and returning to the surface, Johnsen and Haddock then photographed the animals' dim bluish glows – ranging from glowing corals and shrimp that literally vomit light (spewing out the chemicals that generate light where they mix in the surrounding currents) to the first bioluminescent anemone that has been discovered – and carefully measured their spectra. The duo found that most of the species produced blue and blue-green spectra, peaking at wavelengths ranging from 455 to 495nm. However, a family of soft corals known as the pennatulaceans produced green light, with spectra peaking from 505 to 535nm. 'We were working at the absolute limits of what the equipment can do', remembers Johnsen, recalling the frustration of working in the cramped, pitch-dark conditions on the boat. 'It gives you respect for our vision, we can see the bioluminescence fine, but getting it recorded on an instrument or a camera is much harder', he adds. And as if that wasn't challenging enough, proving that anything living down there could even see the spectacular light display was even trickier.

Devising a strategy for collecting crustaceans ranging from crabs to isopods under dim red light – to protect their sensitive vision – by luring or gently sucking them into light-tight boxes, the submersible's crew then sealed the animals in boxes to protect their vision from harsh daylight when they reached the surface. Back on the RV Seward Johnson, Frank painstakingly measured the weak electrical signals produced by the animals' eyes in response to dim flashes of light ranging from 370nm to over 600nm and found that the majority of the creatures were most sensitive to blue/green wavelengths, ranging from 470nm to 497nm (Frank at al. 2012). Most surprisingly, two of the animals were capable of detecting UV wavelengths. Even though there is no UV left from the sun at this depth, Johnsen explains, 'Colour vision works by having two channels with different spectral sensitivities, and our best ability to discriminate colours is when you have light of wavelengths between the peak sensitivities of the two pigments.' He suspects that combining the inputs from the blue and UV photoreceptors allows the crustaceans to pick out fine gradations in the blue-green spectrum that are beyond our perception, suggesting, 'These animals might be colour-coding their food': they may discard unpleasant-tasting green bioluminescent coral in favour of nutritious blue bioluminescent plankton.

Finally, after recording the crustacean's spectral sensitivity, Frank – from Nova Southeastern University, USA – measured how much light the animals' eyes had to collect before sending a signal to the brain (the flicker rate). She explains that there is a trade-off between the length of time that the eye collects light and the ability to track moving prey. Eyes that are sensitive to dim conditions lower the flicker rate to gather light for longer before sending the signal to the brain. However, objects moving faster than the flicker rate become blurred and their direction of motion may not be clear. The crustaceans' flicker rates ranged from 10 to 24Hz (human vision, which is sensitive to bright light, has a flicker rate of 60Hz) and the team were amazed to find that one crustacean, the isopod Booralana tricarinata, had the slowest flicker rate ever recorded: 4Hz. According to Frank, the isopod would have problems tracking even the slowest-moving prey. She suggests that as it is a scavenger, it is possible that it may be searching for pockets of glowing bacteria on rotting food and it might achieve the sensitivity required to see this dim bioluminescence with extremely slow vision.

Having shown that bioluminescent benthic species are scarce but the phenomenon itself is not, Johnsen is keen to return to the ocean floor to discover more about the exotic creatures that reside there. 'We would love to go back, get more basic data. We've only scratched the surface', he says, adding, 'When you are down there you are cramped and cold and stiff, but at the end of a dive I never want to come back up.'

IF REPORTING ON THESE STORIES, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org/content/215/19/3335.abstract AND http://jeb.biologists.org/content/215/19/3344.abstract

REFERENCES: Johnsen, S., Frank, T. M., Haddock, S. H. D., Widder, E. A. and Messing, C. G. (2012). Light and vision in the deep-sea benthos: I. Bioluminescence at 500m depth in the Bahamian Islands. J. Exp. Biol. 215, 3335-3343.

Frank, T. M., Johnsen, S. and Cronin, T. W. (2012). Light and vision in the deep-sea benthos: II. Vision in deep-sea crustaceans. J. Exp. Biol. 215, 3344-3353.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>