Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breeding Salt-Tolerant Plants

10.10.2017

The quinoa plant might serve as a model for making other crops salt-tolerant. It grows well on saline soils because the excess salt is simply dumped into special bladders on its leaves.

Soil erosion is considered as a problem that puts the nutrition of the human population at jeopardy. One of its aspects is soil salination, which affects in particular dry regions of the earth, where farmers are forced to irrigate their fields heavily.


Quinoa leaf with typical salt bladders. Right, you see the plant transporting the dissolved salts into the bladder and then in its vacuoles. The sugar carried along provides the necessary energy.

Picture: Jennifer Böhm

Large quantities of the salts dissolved in the water, such as sodium and chloride, are diffused into the soil and remain there after the water has evaporated. The salt stunts the crops and can even make soils infertile in the long run.

“All approaches so far to breed salt-tolerant plants must be considered more or less as failures”, says Professor Rainer Hedrich, plant scientist at the Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany. They all aimed at making crop plants grow on saline soils and to identify salt-tolerant breed lines in the process. But this approach cannot work.

And that is for a reason: “Our crop plants are the result of many years of breeding. During that time, man has sheltered them from nearly all negative environmental influences, so that they have lost a lot of their natural resilience”, explains Hedrich. “As soon as these elite lines come in contact with too much salt, they usually die.”

Salt-tolerant plants serve as model

So Rainer Hedrich, together with Professor Sergey Shabala (University of Tasmania), set out to develop a new strategy. The two scientists placed their bet on plants that are naturally salt-tolerant.

One such plant is quinoa (Chenopodium quinoa). It comes from the Andes, where it has been been used as food for 7,000 years. Meanwhile the seeds of this South American pseudo-cereal, which are free from gluten and rich in vitamins, have found their way to European supermarket shelves.

The plant absorbs salt from the soil and stores it in bladder-shaped cells on the surface of its leaves. This protects the salt-sensitive metabolic processes, and the plant can grow well even on saline soils.

Without bladder cells quinoa suffers from salt stress

The researchers have found a simple way of proving that it is really the bladder cells that ensure the plant’s salt tolerance. “Just a few light brush strokes over a quinoa leaf cause the bladder cells to fall off”, says Professor Shabala. Stripped of their salt bladders, these plants grow on non-saline soils just as well as non-brushed specimens. But an exposure to common salt stunts their growth significantly.

The round to oval bladder cells of quinoa have a diameter of almost half a millimeter. They are veritable giants in the kingdom of plants, and can usually be seen even with the naked eye. Their storage capacity is up to 1000 times higher than that of any normal cell of the leaf surface.

The price of salt disposal is sugar

To get an insight into the “operating system” of quinoa and its bladder cells, the work group of Professor Jian-Kang Zhu (University of Shanghai) has decoded the Andes cereal’s DNA. Professor Hedrich’s team then compared the active genes of leaves and bladder cells. The necessary bioinformatic analyses were performed by experts from the University of Shanghai and from the team of Georg Haberer from the Helmholtz Center Munich.

The result: Even without salt treatment, there are genes working in the bladder cells which are in other species only active when the plant is under stress. They include transporters carrying sodium and chloride ions into the bladder cell. A stimulation with salt triggers the activation of further genes needed to maintain the signal path for the stress hormone ABA.

Storing the salt consumes energy. This energy is generated by the bladder cells from sugar molecules which they specially import from the leaf for that purpose. The bladder cells receive the required energy from the leaf and reciprocate by absorbing the toxic salt”, explains Hedrich.

Crossbreeding salt tolerance into crop plants

The new findings have been published in the “Cell Reports” journal. They are to be used in the long term for the breeding of salt-tolerant plants. “The first step is made”, says Professor Hedrich. “We will now use a combination of developmental genetics and the functional analysis of salt transport proteins to understand the molecular mechanisms that produces and maintains the salt tolerance in quinoa.”

The JMU research team wants to learn from quinoa lines equipped with a very large or a very low number of salt bladders. It has a large pool to draw on: about 2000 wild and cultivated varieties of the plant from the Andes are known so far. The ultimate outcome of their work might be not only the breeding of quinoa varieties with an even higher salt tolerance but also the crossbreeding of salt tolerance genes into related crop plants such as sugar beets or spinach.

“A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and exceptional nutritional value". Heng Zhang, Changsong Zou, Aojun Chen, Lihong Xiao, Meiling Zhang, Wei Jia, Ping Deng, Ru Huang, Feng Li, Jian-Kang Zhu, Heike Muller, Peter Ache, Rainer Hedrich, Georg Haberer, Xiangyun Wu, Hui Zhang, Jennifer Bohm, Sergey Shabala, Renyi Liu, Daniel Lang, and Dongliang Zhan, Cell Reports doi:10.1038/cr.2017.124

Contact

Prof. Dr. Rainer Hedrich, Chair of Molecular Plant Physiology and Biophysics, Biocentre, JMU, T +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>