Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough Research Could Create Sea Change in Global HIV Diagnosis

22.01.2013
New Handheld Mobile Device Performs Laboratory-Quality HIV Testing

New research appearing online today in Clinical Chemistry, the journal of AACC, shows that a handheld mobile device can check patients’ HIV status with just a finger prick, and synchronize the results in real time with electronic health records. This technology takes a step toward providing remote areas of the world with diagnostic services traditionally available only in centralized healthcare settings.

Of the 34 million people infected with HIV worldwide, 68% of them live in sub-Saharan Africa, with South and Southeast Asia bearing the second greatest burden of disease. Many HIV-infected people in these regions are unable to get tested or treated because they can’t easily travel to centralized healthcare centers. This creates an extreme economic burden on already-poor nations, with the epidemic estimated to cause a 1.5% annual loss in gross domestic product each year for the worst-affected countries. It has also created 16.6 million AIDS orphans—children who have lost one or both parents to the disease.

A low-cost mobile device that performs HIV testing could help combat these trends, and the overall global epidemic, by enabling the diagnosis and treatment of HIV-infected people in resource-limited settings. In this study, a team including Curtis D. Chin, PhD, and Yuk Kee Cheung, PhD, designed a device that captures all the essential functions of enzyme-linked immunosorbent assays, the most commonly used laboratory diagnostic for HIV. The authors show that the device performs laboratory-quality HIV testing in 15 minutes using finger-pricked whole blood.

The device also detects weakly positive samples, and uses cellphone and satellite networks to automatically synchronize test results with patient health records from anywhere in the world. Because of this real-time data upload, this mobile device will allow policymakers and epidemiologists to monitor disease prevalence across geographical regions quickly and effectively. This could improve effectiveness in allocating medications to different communities, and patient care in general.

Dr. Nader Rifai, editor in chief of Clinical Chemistry, states, "This is a perfect example of how ingenuity and good science can effectively address a real and serious medical problem."

About AACC
The American Association for Clinical Chemistry, AACC, is a leading international medical society dedicated to improving healthcare through laboratory medicine. With more than 9,000 clinical laboratory professionals, physicians, research scientists, and other members involved in developing tests and directing laboratory operations, AACC brings the laboratory community together with programs that advance knowledge, expertise, and innovation.

Clinical Chemistry is the leading international journal of clinical laboratory science, providing 2,000 pages per year of peer-reviewed papers that advance the science of the field. With an impact factor of 7.9, Clinical Chemistry covers everything from molecular diagnostics to laboratory management.

Molly Polen | Newswise
Further information:
http://www.aacc.org

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>