Breakthrough in Niemann-Pick Type C research reported by Notre Dame and Cornell scientists

The paper shows how use of a histone deacetylase inhibitor correct the damage done by the genetic disorder and allowed once-diseased cells to function normally.

Niemann-PickType C (NPC) involves a genetic flaw that keeps cells from using lipids appropriately and leaves the lipids trapped in the cell. Brain cells are especially impacted, and destruction of brain cells typically kills victims by their teen years and there is currently no treatment available in the U.S. NPC is an inherited cholesterol metabolism disorder that strikes one in every 150,000 children. It has been referred to by the National Institutes of Health as “childhood Alzheimer's” because of similarities in the brains of NPC and Alzheimer's disease patients.

Three of the four grandchildren of former Notre Dame head football coach Ara Parseghian died of NPC, and the University has been involved in research on the disorder for years. Last year, it formally united with the Parseghian Foundation, which sponsored this work.

Last summer, Notre Dame College of Science Dean Gregory Crawford and his wife Renate bicycled 2,300 miles from Tucson to Notre Dame to raise awareness of the newly strengthened partnership with the Parseghian Foundation. Notre Dame's Center for Rare and Neglected Diseases works to develop therapies and outreach efforts for people suffering from conditions, like NPC, that have bee3n largely ignored by pharmaceutical companies.

A team of led by Wiest and Helquist at Notre Dame and Maxfield at Cornell, uncovered evidence that histone deacetylase inhibitors correct NPC's genetic flaw. Detailed images obtained at Cornell by Maxfield's group gave vivid evidence of the drug's effectiveness, showing how NPC cells became indistinguishable from normal human cells after treatment with the drug. The histine deacetylase inhibitors have a wide range of potential uses, from rare diseases, the focus at Notre Dame, to several forms of cancer, including leukemia, where they can increase the number of bone marrow cells.

Several of the compounds studied are shown to be safe in advanced clinical studies of cancer and one compound is currently approved by the FDA.

“Our biggest single emphasis the last few years has been Niemann-Pick among these rare diseases,” Helquist said. “We developed several processes for the efficient preparation of these types of drugs. There's a stream of publications and also a stream of patents starting in June 2007 and continuing this year.”

“If the results in human cells can be confirmed in clinical trials, the fact that the histone deacetylase inhibitors are already in advanced clinical trials or even approved drugs could greatly accelerate the development of a treatment for this devastating disease.”

Contacts: Olaf Wiest, owiest@nd.edu, Paul Helquist,phelquis@nd.edu, Notre Dame; Frederick Maxfield, frmaxfie@cornell.edu, Cornell.

Media Contact

Olaf Wiest EurekAlert!

More Information:

http://www.nd.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors