Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New breakthrough in global warming plant production

01.04.2009
Researchers 1 step closer to 'Holy Grail' of plant biology research

Researchers at the universities of Leicester and Oxford have made a discovery about plant growth which could potentially have an enormous impact on crop production as global warming increases.

Dr Kerry Franklin, from the University of Leicester Department of Biology led the study which has identified a single gene responsible for controlling plant growth responses to elevated temperature.

Dr Franklin said: "Exposure of plants to high temperature results in the rapid elongation of stems and a dramatic upwards elevation of leaves".

"These responses are accompanied by a significant reduction in plant biomass, thereby severely reducing harvest yield. Our study has revealed that a single gene product regulates all these architectural adaptations in the model plant species, Arabidopsis thaliana."

The work has been published in Current Biology and was funded by the Royal Society and the BBSRC.

Dr Franklin added: "This study provides the first major advance in understanding how plants regulate growth responses to elevated temperature at the molecular level. This discovery will prove fundamental in understanding the effects of global climate change on crop productivity".

"Identification of the mechanisms by which plants sense changes in ambient temperature remains a Holy Grail in plant biology research. Although the identity of such 'temperature sensors' remains elusive, the discovery of a key downstream regulator brings us closer to addressing this important question."

The study has shown that mutant plants, deficient in the regulatory protein PHYTOCHROME INTERACTING FACTOR 4 (PIF4) do not display the dramatic stem elongation and leaf elevation responses observed in wild type plants upon exposure to elevated temperature.

The study has further shown PIF4 to regulate a pathway involving the plant hormone auxin. The PIF4 gene product was previously identified as a co-regulator of light-mediated elongation growth, suggesting plants integrate light and temperature signalling pathways through converged regulation of the same target proteins.

Dr. Kerry Franklin | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>