Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough finds molecules that block previously 'undruggable' protein tied to cancer

10.04.2015

A team of scientists at the University of Kansas has pinpointed six chemical compounds that thwart HuR, an "oncoprotein" that binds to RNA and promotes tumor growth. The findings, which could lead to a new class of cancer drugs, appear in the current issue of ACS Chemical Biology.

"These are the first reported small-molecule HuR inhibitors that competitively disrupt HuR-RNA binding and release the RNA, thus blocking HuR function as a tumor-promoting protein," said Liang Xu, associate professor of molecular biosciences and corresponding author of the paper.


Research at the University of Kansas has isolates six compounds that block the cancer-facilitating protein HuR.

Credit: KU News Service/University of Kansas

The results hold promise for treating a broad array of cancers in people. The researcher said HuR has been detected at high levels in almost every type of cancer tested, including cancers of the colon, prostate, breast, brain, ovaries, pancreas and lung.

"HuR inhibitors may be useful for many types of cancer," Xu said. "Since HuR is involved in many stem cell pathways, we expect HuR inhibitors will be active in inhibiting 'cancer stem cells,' or the seeds of cancer, which have been a current focus in the cancer drug discovery field."

HuR has been studied for many years, but until now no direct HuR inhibitors have been discovered, according to Xu.

"The initial compounds reported in this paper can be further optimized and developed as a whole new class of cancer therapy, especially for cancer stem cells," he said. "The success of our study provides a first proof-of-principle that HuR is druggable, which opens a new door for cancer drug discovery. Many other RNA-binding proteins like HuR, which are so far undruggable, can also be tested for drug discovery using our strategy."

The research team evaluated about 6,000 compounds from both the KU Chemical Methodologies and Library Development Center and the Food and Drug Administration in a process known as "High Throughput Screening," hunting for compounds that obstruct HuR's interface with healthy human RNA.

The KU researchers confirmed the potential of the most promising compounds with cutting-edge techniques like Amplified Luminescent Proximity Homogeneous Assay, surface plasmon resonance, ribonucleoprotein immunoprecipitation assay and luciferase reporter functional studies -- verifying that six compounds with a similar "scaffold" could be starting points of novel cancer drugs to target the oncoprotein HuR.

"A cancer-causing gene, or oncogene, makes RNA, which then makes an oncoprotein that causes cancer or makes cancer cells hard to kill, or both," Xu said. "This is the problem we're trying to overcome with precision medicine."

The scientist said the HuR-RNA binding site is like a long, narrow groove, not a well-defined pocket seen in other druggable proteins targeted by many current cancer therapies.

"HuR tightly binds to RNA like a hand," Xu said. "The HuR protein grabs the 'rope' -- or the RNA -- at a site called 'ARE' on the rope. We aimed to find a small-molecule compound that makes the hand release the rope by competing with ARE of the RNA."

The research took more than 3 1/2 years and involved the collaboration of chemists, cancer biologists, computer modeling experts, biochemists and biophysicists at KU -- notably the labs of Xu, Jeffrey Aubé in the Department of Medicinal Chemistry and Jon Tunge in the Department of Chemistry.

Grants from the National Institutes of Health, along with funding from the state of Kansas, the Hall Family Foundation and Bold Aspiration funding from KU's Office of the Provost, supported the work.

For Xu, the findings are reflective of a personal commitment to improving odds for people diagnosed with cancer, the second-largest killer in the U.S. after heart disease.

"Trained as medical doctor and Ph.D., with both a grandfather and an uncle who died of cancer, I devoted my career to cancer research and drug discovery -- aiming to translate discovery in the lab into clinical therapy, to help cancer patients and their families," he said. "We hope to find a better therapy -- and eventually a cure -- for cancer."

###

Collaborators from KU and KU Medical Center include Xiaoqing Wu, Lan Lan, David Michael Wilson, Rebecca Marquez, Wei-chung Tsao, Philip Gao, Anuradha Roy, Benjamin Andrew Turner, Peter McDonald, Jon Tunge, Steven Rogers, Dan Dixon and Jeffrey Aubé.

Media Contact

Brendan M Lynch
brendan@ku.edu
785-864-8855

 @KUNews

http://www.news.ku.edu 

Brendan M Lynch | EurekAlert!

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>