Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in cancer vaccine research

05.11.2010
New research could lead to improved vaccines for cancerous tumors

Researchers at the University of Cambridge hope to revolutionise cancer therapy after discovering one of the reasons why many previous attempts to harness the immune system to treat cancerous tumours have failed.

New research, published today in the journal Science, reveals that a type of stromal cell found in many cancers which expresses fibroblast activation protein alpha (FAP), plays a major role in suppressing the immune response in cancerous tumours – thereby restricting the use of vaccines and other therapies which rely on the body's immune system to work. They have also found that if they destroy these cells in a tumour immune suppression is relieved, allowing the immune system to control the previously uncontrolled tumour.

Douglas Fearon, Sheila Joan Smith Professor of Immunology of the Department of Medicine at the University of Cambridge, said: "Finding the specific cells within the complex mixture of the cancer stroma that prevents immune killing is an important step. Further studying how these cells exert their effects may contribute to improved immunological therapies by allowing us to remove a barrier that the cancer has constructed."

Vaccines created to prompt the immune system to attack cancerous cells in tumours have shown to activate an immune response in the body but have, inexplicably, almost never affected the growth of tumours. Immunologists who specialise in tumours have suspected that within the tumour microenvironment the activity of immune cells is somehow suppressed, but they have thus far been unable to fully reverse this suppression.

The new research, funded by the Wellcome Trust and the Sheila Joan Smith Professorship endowment, sheds light on why the immune response is suppressed. The Cambridge study found that at least one immune suppressive component is contained within normal tissue cells (called stromal cells) the cancer has coerced to assist its survival. The cell they studied specifically expresses a unique protein often associated with wound healing - fibroblast activation protein alpha (FAP). The FAP expressing cells are found in many cancers, including breast and colorectal cancers.

In order to determine if FAP expressing stromal cells contribute to the resistance of a tumour to vaccination, the researchers created a transgenic mouse model which allowed them to destroy cells which expressed FAP. When FAP-expressing cells were destroyed in tumours in mice with established Lewis lung carcinomas (of which only 2% of the tumour cells are FAP-expressing), the cancer began to rapidly 'die'. The Fearon lab now hopes to collaborate with scientists at the CRUK Cambridge Research Institute to evaluate the effects of depleting FAP-expressing cells in a mouse model that more closely resemble human cancer, and to examine FAP-expressing cells of human tumours.

Professor Fearon continued: "These studies are in the mouse, and although there is much overlap between the mouse and human immune systems, we will not know the relevance of these findings in humans until we are able to interrupt the function of the tumour stromal cells expressing FAP in patients with cancer.

"It should be noted, however, that the FAP-expressing stromal cell was actually first found in human cancer by Lloyd Old and his colleagues 20 years ago."

For additional information please contact:
Genevieve Maul, Office of Communications, University of Cambridge
Tel: direct, +44 (0) 1223 765542, +44 (0) 1223 332300
Mob: +44 (0) 7774 017464
Email: Genevieve.maul@admin.cam.ac.uk
Notes to editors:
1. The paper 'Suppression of Antitumour Immunity by Fibroblast Activation Protein – á – Expressing Stromal Cells' will be published in the 05 November 2010 edition of Science.

2. The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests. www.wellcome.ac.uk

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>