Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in cancer vaccine research

05.11.2010
New research could lead to improved vaccines for cancerous tumors

Researchers at the University of Cambridge hope to revolutionise cancer therapy after discovering one of the reasons why many previous attempts to harness the immune system to treat cancerous tumours have failed.

New research, published today in the journal Science, reveals that a type of stromal cell found in many cancers which expresses fibroblast activation protein alpha (FAP), plays a major role in suppressing the immune response in cancerous tumours – thereby restricting the use of vaccines and other therapies which rely on the body's immune system to work. They have also found that if they destroy these cells in a tumour immune suppression is relieved, allowing the immune system to control the previously uncontrolled tumour.

Douglas Fearon, Sheila Joan Smith Professor of Immunology of the Department of Medicine at the University of Cambridge, said: "Finding the specific cells within the complex mixture of the cancer stroma that prevents immune killing is an important step. Further studying how these cells exert their effects may contribute to improved immunological therapies by allowing us to remove a barrier that the cancer has constructed."

Vaccines created to prompt the immune system to attack cancerous cells in tumours have shown to activate an immune response in the body but have, inexplicably, almost never affected the growth of tumours. Immunologists who specialise in tumours have suspected that within the tumour microenvironment the activity of immune cells is somehow suppressed, but they have thus far been unable to fully reverse this suppression.

The new research, funded by the Wellcome Trust and the Sheila Joan Smith Professorship endowment, sheds light on why the immune response is suppressed. The Cambridge study found that at least one immune suppressive component is contained within normal tissue cells (called stromal cells) the cancer has coerced to assist its survival. The cell they studied specifically expresses a unique protein often associated with wound healing - fibroblast activation protein alpha (FAP). The FAP expressing cells are found in many cancers, including breast and colorectal cancers.

In order to determine if FAP expressing stromal cells contribute to the resistance of a tumour to vaccination, the researchers created a transgenic mouse model which allowed them to destroy cells which expressed FAP. When FAP-expressing cells were destroyed in tumours in mice with established Lewis lung carcinomas (of which only 2% of the tumour cells are FAP-expressing), the cancer began to rapidly 'die'. The Fearon lab now hopes to collaborate with scientists at the CRUK Cambridge Research Institute to evaluate the effects of depleting FAP-expressing cells in a mouse model that more closely resemble human cancer, and to examine FAP-expressing cells of human tumours.

Professor Fearon continued: "These studies are in the mouse, and although there is much overlap between the mouse and human immune systems, we will not know the relevance of these findings in humans until we are able to interrupt the function of the tumour stromal cells expressing FAP in patients with cancer.

"It should be noted, however, that the FAP-expressing stromal cell was actually first found in human cancer by Lloyd Old and his colleagues 20 years ago."

For additional information please contact:
Genevieve Maul, Office of Communications, University of Cambridge
Tel: direct, +44 (0) 1223 765542, +44 (0) 1223 332300
Mob: +44 (0) 7774 017464
Email: Genevieve.maul@admin.cam.ac.uk
Notes to editors:
1. The paper 'Suppression of Antitumour Immunity by Fibroblast Activation Protein – á – Expressing Stromal Cells' will be published in the 05 November 2010 edition of Science.

2. The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests. www.wellcome.ac.uk

Genevieve Maul | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>