Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough allows researchers to watch molecules 'wiggle'

06.10.2014

A new crystallographic technique developed at the University of Leeds is set to transform scientists' ability to observe how molecules work.

A research paper, published in the journal Nature Methods on October 5, describes a new way of doing time-resolved crystallography, a method that researchers use to observe changes within the structure of molecules.

Although fast time-resolved crystallography (Laue crystallography) has previously been possible, it has required advanced instrumentation that is only available at three sites worldwide. Only a handful of proteins have been studied using the traditional technique.

The new method will allow researchers across the world to carry out dynamic crystallography and is likely to provide a major boost in areas of research that rely on understanding how molecules work, such as the development of novel smart materials or new drugs.

Observing how structure and dynamics are linked to function is key to designing better medicines that are targeted at specific states of molecules, helping to avoid unwanted side effects.

"A time-resolved structure is a bit like having a movie for crystallographers," said Professor Arwen Pearson, who led the team at Leeds. "Life wiggles. It moves about and, to understand it, you need to be able to see how biological structures move at the atomic scale. This breakthrough allows us to do that."

Traditional X-ray crystallography fires X-rays into crystallised molecules and creates an image that allows researchers to work out the atomic structure of the molecules. A major limitation is that the picture created is the average of all the molecules in a crystal and their motions over the time of an experiment.

Dr Briony Yorke, the lead researcher on the project, said: "A static picture is not very helpful if you want to observe how molecular structures work. It is like trying to find out how a car works without being allowed to run the engine. You can look at the spark plugs and the piston and maybe take a guess at how it is going to function, but it is hard to really understand something without seeing it in action."

The existing method of getting around the problem could be compared to the laborious process of making an animated film. Scientists "synchronise" a set of molecules in an identical state and then activate, or "pump", the changes in the molecules. They take a crystallographic snapshot of the structure after a set time. The researchers then have to begin the whole experiment again: synchronising the molecules, "pumping" them and then taking a snapshot a bit later in the process. Slowly, they build up a moving picture.

This pump-probe approach was first proposed in Nobel Prize winning research by the British chemist George Porter in the 1940s and has had a huge impact on our understanding of chemistry.

However, a major limitation of the "pump-probe" approach for crystallographic experiments is that the snapshots are only "exposed" for a moment (often as short as 100 million millionths of a second) in order to capture the molecular movements. That means there is very little time to deliver enough light to create a crystallographic image.

There are only three "synchrotrons", large X-ray generators, in the world—in the US, France and Japan—that are capable of delivering a powerful enough beam.

The new method uses clever maths (a Hadamard Transform) to open up the field to much less powerful synchrotron "beamlines", advanced laboratories that scientists use to harness powerful synchrotron light for crystallography and other techniques. This will enable facilities such as the UK's own synchrotron, Diamond Light Source, to do time-resolved crystallography.

As in Porter's method, researchers using the new approach synchronise their molecules and activate them. However, they then make a series of crystallographic "probes" of the moving structures using a pattern of light pulses. These pulses build up a single crystallographic image—a bit like a long exposure photograph.

The researchers then repeat the experiment using a different pattern of light pulses and create a different "long exposure" image. This process is repeated until all of the pulse patterns created using a mathematical formula have been completed.

Each of the "long exposure" images created from the pulse patterns is blurred, but the differences in the images and between the pulse patterns that created them allow researchers to extract a moving picture of the molecules' changing structures.

Professor Pearson said: "The great thing about this method is that we don't need the clear snapshots, and therefore the very strong light, required by the Porter method. This is a completely new way of doing a time-resolved experiment and overcomes many of the current limitations."

Co-author Professor Godfrey Beddard, Emeritus Professor of Chemical Physics at the University of Leeds, said: "We demonstrate this method for crystallography, but it will work for any time-resolved experiment where the probe can be encoded. This new method means that, instead of having to go to one of the three instruments in the world that can currently do time-resolved crystallography, you can go to any beamline at any synchrotron—basically it massively opens the field for these kind of experiments."

Co-author Dr Robin Owen, Principal Beamline Scientist at Diamond Light Source, said: "The beauty of the approach is that it uses existing equipment in a new way to facilitate new science. The novel use of the Hadamard transform, or multiple-exposure, approach helps open the door for time-resolved science at a much wider range of beamlines and synchrotron sources than is currently possible. By exploiting the approach we will be able to obtain multiple sequential images of a protein while it carries out its function, providing a much clearer understanding of the relationship between structure and function."

Professor Paul Raithby, Chair of Inorganic Chemistry at the University of Bath, a leading expert on time-resolved crystallography who was not one of the authors of the paper, said: "This is a very exciting development in the area of macromolecular and molecular crystallography. The new method will allow us to "watch" chemical and biological processes as they happen in a way that has not been possible previously, and open up new vistas of research into the dynamics of molecules and materials. What is particularly exciting from my point of view is that the method can be used in my area of research to look at how "smart" materials function in real time and help in the design of the next generation of electronic devices and sensors."

###

The research was funded by the Wellcome Trust and was conducted at the University of Leeds and the Diamond Light Source. Professor Pearson is now Professor of Experimental Biophysics at The Hamburg Centre for Ultrafast Imaging (CUI) of Universität Hamburg. Dr Yorke is now a postdoctoral research fellow, also at Universität Hamburg.

Professor Pearson, Dr Yorke and Professor Beddard are available for interview and can be contacted through the University of Leeds press office.

Dr Owen can be contacted through Silvana Westbury in the Diamond Light Source press office; call +44 1235 778130 or email silvana.westbury@diamond.ac.uk

The full paper: Briony A Yorke, Godfrey S Beddard, Robin L Owen, Arwen R Pearson "Time-resolved crystallography using the Hadamard Transform" is published in Nature Methods (2014) (DOI: 10.1038/nmeth.3139; URL:http://dx.doi.org/10.1038/nmeth.3139) is available to members of the media from the University of Leeds press office.

The University of Leeds is one of the largest higher education institutions in the UK and a leading research powerhouse. It is a member of the Russell Group of research-intensive universities. The University was ranked in the top 100 of the world's best universities in the QS World University Rankings 2014. X-ray crystallography was pioneered at the University of Leeds in 1912-13 by Professor of Physics William Henry Bragg and his son William Lawrence Bragg, a researcher at the University of Cambridge. They won the 1915 Nobel Prize in Physics. George Porter, the developer of the "pump-probe" technique of time resolved crystallography was also a University of Leeds graduate. http://www.leeds.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests. http://www.wellcome.ac.uk

Diamond Light Source is the UK's national synchotron science facility, located at the Harwell Science and Innovation Campus in Oxfordshire. http://www.diamond.ac.uk

The Hamburg Centre for Ultrafast Imaging (CUI) is a research project of the Universität Hamburg and is funded as part of the Excellence Initiative of the German Federal and State Governments. Scientists at CUI want to observe and understand ultrafast processes directly on the atomic level of detail, with the ultimate aim of controlling them systematically. Since this undertaking requires the expertise of many disciplines, scientists from Physics, Chemistry, Biology, and Medicine have joined forces under the umbrella of CUI. http://www.cui.uni-hamburg.de/en/

Chris Bunting | Eurek Alert!

Further reports about: Breakthrough Diamond Nobel Prize Source X-ray exposure images materials structure structures

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>