Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking the Ties that Bind: New Hope for Biomass Fuels

24.04.2009
Los Alamos researchers crack code for binding lignocellulosic biomass

Los Alamos National Laboratory researchers have discovered a potential chink in the armor of fibers that make the cell walls of certain inedible plant materials so tough. The insight ultimately could lead to a cost-effective and energy-efficient strategy for turning biomass into alternative fuels.

In separate papers published today in Biophysical Journal and recently in an issue of Biomacromolecules, Los Alamos researchers identify potential weaknesses among sheets of cellulose molecules comprising lignocellulosic biomass, the inedible fibrous material derived from plant cell walls. The material is a potentially abundant source of sugar that can be used to brew batches of methanol or butanol, which show potential as biofuels.

Cellulose is biosynthesized in plant cells when molecules of glucose—a simple sugar—join into long chains through a process called polymerization. The plant then assembles these chains of cellulose into sheets. The sheets are held together by hydrogen bonds—an electrostatic attraction of a positive portion of a molecule to a negative portion of the same or neighboring molecule. Finally, the sheets stack atop one another, sticking to themselves by other types of attractions that are weaker than hydrogen bonds. The plant then spins these sheets into high-tensile-strength fibers of material.

Not only are the fibers incredibly strong, but they are incredibly resistant to the action of enzymes called cellulases that can crack the fibers back into their simple-sugar components. The ability to economically and easily break cellulose into sugars is desirable because the sugars can be used to create fuel alternatives. However, due to the tenacity of cellulose fibers, the United States currently lacks an energy-efficient and cost-effective method for turning inedible biomass such as switch grass or corn husks into a sweet source of biofuels.

Working with researchers from the U.S. Department of Agriculture and the Centre de Recherches sur les Macromolécules Végétales in France, Los Alamos researcher Paul Langan used neutrons to probe the crystalline structure of highly crystalline cellulose, much like an X-ray is used to probe the hidden structures of the body. Langan and his colleagues found that although cellulose generally has a well-ordered network of hydrogen bonds holding it together, the material also displays significant amounts of disorder, creating a different type of hydrogen bond network at certain surfaces. These differences make the molecule potentially vulnerable to an attack by cellulase enzymes.

Moreover, in this month’s Biophysical Journal, Los Alamos researchers Tongye Shen and Gnana Gnanakaran describe a new lattice-based model of crystalline cellulose. The model predicts how hydrogen bonds in cellulose can shift to remain stable under a wide range of temperatures. This plasticity allows the material to swap different types of hydrogen bonds but also constrains the molecules so that they must form bonds in the weaker configuration described by Langan and his colleagues. Most important, Shen and Gnanakaran’s model identifies hydrogen bonds that can be manipulated via temperature differences to potentially make the material more susceptible to attack by enzymes that can crack the fibers into sugars for biofuel production.

“We have been able to identify a chink in the armor of a very tough and worthy adversary—the cellulose fiber,” said Gnanakaran, who leads the theoretical portion of a large, multidisciplinary biofuels project at Los Alamos.

“These results are some of the first to come from this team, and eventually could point us toward an economical and viable process for making biofuels from cellulosic biomass,” adds Langan, director of the biofuels project.

Funding for the project comes from Laboratory-Directed Research and Development (LDRD), which is the premier source of internally directed research-and-development funding at Los Alamos National Laboratory. The LDRD program invests in high-risk, potentially high-payoff projects at the discretion of the Laboratory Director. Strategic investments of the LDRD program help position Los Alamos to anticipate and prepare for emerging national security challenges.

Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and the Washington Division of URS for the Department of Energy's National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

James Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>