Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking the aphid's code

24.02.2010
University of Miami biologist helps sequence the genome of the pea aphid, a notorious agricultural pest

For the first time, scientists have sequenced the entire genome of the pea aphid, a notorious horticultural and agricultural pest. The findings reveal the extent of the genetic collaboration of the aphid host with its bacterial symbiont, which may account for some of the extraordinary characteristics of this insect.

Aphids are among the first insects to appear in early spring on crops. They possess incredible adaptive abilities, and under optimal conditions, reproduce very rapidly. They live by sucking the juices of plants, and if left untreated they can cause plant death. All this means trouble for growers. Annual global crop losses associated with aphids run at hundreds of millions of dollars.

"The most important direct benefits to society from this project will come from the way the project increases our ability to understand the ways that aphids interact with their host plants, the plant viruses they transmit, and their bacterial symbionts. These aspects of aphid biology directly impact food supply and pesticide use," says Alex Wilson, assistant professor of biology at the University of Miami College of Arts and Sciences, and representative for the Americas on the Board of the International Aphid Genomics Consortium, who also serves as member of the project leadership team.

The new study by the International Aphid Genomics Consortium uncovers some of the best-kept secrets of this amazing creature. The study entitled "Genome Sequence of the Pea Aphid Acyrthosiphon pisum" was published online today by PLoS Biology. Genomic analysis of the pea aphid and its bacterial symbiont, Buchnera aphidicola, implicates extensive collaboration between the two partners.

"We found that the interaction of the pea aphid with its bacterial symbiont is far more intimate than anyone had previously envisioned," says Wilson. "We hypothesize, based on the genome sequence that they each compensate for the evolutionary loss of genes by shuffling essential metabolic products between them. Gene loss between the two partners is so extensive that neither one can live without the other."

Pea aphids are small, with adult sizes ranging from 4-5 mm, and are green or pink in color. They have amazing plasticity. Whenever overcrowding occurs; an aphid colony will produce winged females that migrate to establish new colonies in other areas. Able to reproduce both sexually and asexually, aphid populations can increase in size at exponential rates: when asexual females are pregnant, their embryos are also pregnant, so females can carry both their daughters and granddaughters, a condition called telescoping of generations.

The sequencing of the pea aphid genome, funded by the National Human Genome Research Institute, resulted from a collaboration between a team at the Baylor College of Medicine led by Dr. Stephen Richards and the International Aphid Genomics Consortium, a diverse group of investigators who work together to advance understanding of the genome biology of the aphid. This study has engaged 200 scientists from 16 countries in advancing research on an insect of scientific, economic and agricultural importance. "Having a genome opens up our world. Anything is now possible," says Wilson. "The genome provides the foundation. Now the hard work begins."

The University of Miami's mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world.

Marie Guma-Diaz | EurekAlert!
Further information:
http://www.umiami.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>