Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Breakdown of Barriers in Old Cells May Hold Clues to Aging Process

26.01.2009
Like guards controlling access to a gated community, nuclear pore complexes are communication channels that regulate the passage of proteins and RNA to and from a cell’s nucleus.

Recent studies by researchers at the Salk Institute for Biological Studies offer new insights about the pores’ lifespan and how their longevity affects their function.

Their findings, reported in the Jan. 23 issue of Cell, may provide clues to one of the most enduring questions of biology: how and why cells age. They also offer a new, promising avenue of investigation for scientists pursuing intervention strategies for neurodegenerative diseases.

“We still have a very poor understanding of the mechanisms behind cell aging. It has been known for some time that the gene expression profile of an aging cell changes and somehow is linked to age-related diseases, but no one really knows why. Our work could provide an explanation for why we observe age-dependent defects in cells,” says Martin Hetzer, Ph.D., an assistant professor in the Salk’s Molecular and Cell Biology Laboratory.

Made up of 30 different proteins, nuclear pore complexes assemble during cell division and penetrate the membrane separating the nucleus from the cytoplasm. Their job is traffic control on the world’s busiest thoroughfare: Each one mediates approximately 1,000 transport events a second. Since nuclear pore complexes are as essential to nondividing cells as they are to dividing ones, the Salk team wanted to determine what happens to them over time. Do they turn over in nondividing cells, or do they remain in place for the life of the cell?

Because most of the cells in our body are not actively dividing, the answer would have implications for aging and age-related diseases. “Many of the neurons in the cortex area of the brain are as old as we are; they are nondividing for a very long time,” explains Hetzer.

Approximately half the proteins in the nuclear pore complex make up the central scaffold, or core, while the other, peripheral proteins attach to the scaffold. Using C. elegans, a tiny roundworm that as an adult consists entirely of nondividing cells, Hetzer and his group found that while the peripheral proteins are continually exchanged, the proteins comprising the scaffold remain in place for the life of the cell.

Although the scaffold proteins are detectable, their genes are no longer active. The same held true in nondividing rat neurons. “If proteins are there, but transcripts of the information making the protein are no longer there, they have to be very stable,” says Hetzer, noting that whereas most proteins turn over in minutes or hours, the ones comprising the scaffold in the nuclear pore complex remained intact for the entire lifespan of an organism. “We discovered one of the most stable structures in our cells.”

“It’s a novel concept,” adds first author Maximiliano A. D’Angelo, Ph.D., a research associate in the Hetzer lab. “No one really saw a structure that would last for the entire life of the cell.”

Hetzer and his group then set out to ascertain how these stable proteins hold up over time. Since one of the functions of the nuclear pore complex is to set a permeability barrier between the nucleus and cytoplasm, the researchers developed a reporting system that would scrutinize the barriers to see how efficient they were at excluding inappropriate molecules, much as security auditors keep tabs on airport baggage screeners’ ability to detect and block contraband.

What they found was that in aging cells, one of the proteins composing the scaffold structure becomes damaged, and the permeability barrier deteriorates; molecules that should be restricted to the cytoplasm invade the nucleus.

“Because some cells live for a long time, the accumulation of damage in the long-lived nuclear pore complexes can impair their function and have important consequences for cell homeostasis and survival,” says D’Angelo. “It may also play a significant role in the aging process.”

In particular, a protein called tubulin, which is strictly a cytoplasmic protein, shows up as long filaments that co-opt a large part of the nucleus. For more than 100 years, pathologists had been aware of these filaments, but their origins were unknown. Associated with several neurodegenerative diseases, including Parkinson’s, the filaments are found particularly in the substantia nigra of many Parkinson’s patients, the part of the brain that is involved in dopamine production and that is affected by the condition.

Hetzer’s team hypothesizes that it is the age-dependent defects in the scaffold proteins that undermine the nuclear permeability barrier. “We predict that when the permeability barrier is impaired, molecules are either lost from the nucleus or can leak into the nucleus and thereby change gene expression profiles,” says Hetzer. “This could be a general aging mechanism, and it provides an explanation for the origin of these filaments, which have been known by pathologists for a long time.”

By finding ways to prevent or reverse the leakage, the Salk researchers may be on course to identify novel approaches to treating these perplexing, devastating, and costly conditions.

In addition to Hetzer and D’Angelo, postdoctoral researcher Marcela Raices, Ph.D., and doctoral candidate Siler H. Panowski of Dr. Andrew Dillin’s laboratory at the Salk Institute contributed to this study. The research was carried out with funding from the NIH.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health, and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>