Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Breakdown of Barriers in Old Cells May Hold Clues to Aging Process

26.01.2009
Like guards controlling access to a gated community, nuclear pore complexes are communication channels that regulate the passage of proteins and RNA to and from a cell’s nucleus.

Recent studies by researchers at the Salk Institute for Biological Studies offer new insights about the pores’ lifespan and how their longevity affects their function.

Their findings, reported in the Jan. 23 issue of Cell, may provide clues to one of the most enduring questions of biology: how and why cells age. They also offer a new, promising avenue of investigation for scientists pursuing intervention strategies for neurodegenerative diseases.

“We still have a very poor understanding of the mechanisms behind cell aging. It has been known for some time that the gene expression profile of an aging cell changes and somehow is linked to age-related diseases, but no one really knows why. Our work could provide an explanation for why we observe age-dependent defects in cells,” says Martin Hetzer, Ph.D., an assistant professor in the Salk’s Molecular and Cell Biology Laboratory.

Made up of 30 different proteins, nuclear pore complexes assemble during cell division and penetrate the membrane separating the nucleus from the cytoplasm. Their job is traffic control on the world’s busiest thoroughfare: Each one mediates approximately 1,000 transport events a second. Since nuclear pore complexes are as essential to nondividing cells as they are to dividing ones, the Salk team wanted to determine what happens to them over time. Do they turn over in nondividing cells, or do they remain in place for the life of the cell?

Because most of the cells in our body are not actively dividing, the answer would have implications for aging and age-related diseases. “Many of the neurons in the cortex area of the brain are as old as we are; they are nondividing for a very long time,” explains Hetzer.

Approximately half the proteins in the nuclear pore complex make up the central scaffold, or core, while the other, peripheral proteins attach to the scaffold. Using C. elegans, a tiny roundworm that as an adult consists entirely of nondividing cells, Hetzer and his group found that while the peripheral proteins are continually exchanged, the proteins comprising the scaffold remain in place for the life of the cell.

Although the scaffold proteins are detectable, their genes are no longer active. The same held true in nondividing rat neurons. “If proteins are there, but transcripts of the information making the protein are no longer there, they have to be very stable,” says Hetzer, noting that whereas most proteins turn over in minutes or hours, the ones comprising the scaffold in the nuclear pore complex remained intact for the entire lifespan of an organism. “We discovered one of the most stable structures in our cells.”

“It’s a novel concept,” adds first author Maximiliano A. D’Angelo, Ph.D., a research associate in the Hetzer lab. “No one really saw a structure that would last for the entire life of the cell.”

Hetzer and his group then set out to ascertain how these stable proteins hold up over time. Since one of the functions of the nuclear pore complex is to set a permeability barrier between the nucleus and cytoplasm, the researchers developed a reporting system that would scrutinize the barriers to see how efficient they were at excluding inappropriate molecules, much as security auditors keep tabs on airport baggage screeners’ ability to detect and block contraband.

What they found was that in aging cells, one of the proteins composing the scaffold structure becomes damaged, and the permeability barrier deteriorates; molecules that should be restricted to the cytoplasm invade the nucleus.

“Because some cells live for a long time, the accumulation of damage in the long-lived nuclear pore complexes can impair their function and have important consequences for cell homeostasis and survival,” says D’Angelo. “It may also play a significant role in the aging process.”

In particular, a protein called tubulin, which is strictly a cytoplasmic protein, shows up as long filaments that co-opt a large part of the nucleus. For more than 100 years, pathologists had been aware of these filaments, but their origins were unknown. Associated with several neurodegenerative diseases, including Parkinson’s, the filaments are found particularly in the substantia nigra of many Parkinson’s patients, the part of the brain that is involved in dopamine production and that is affected by the condition.

Hetzer’s team hypothesizes that it is the age-dependent defects in the scaffold proteins that undermine the nuclear permeability barrier. “We predict that when the permeability barrier is impaired, molecules are either lost from the nucleus or can leak into the nucleus and thereby change gene expression profiles,” says Hetzer. “This could be a general aging mechanism, and it provides an explanation for the origin of these filaments, which have been known by pathologists for a long time.”

By finding ways to prevent or reverse the leakage, the Salk researchers may be on course to identify novel approaches to treating these perplexing, devastating, and costly conditions.

In addition to Hetzer and D’Angelo, postdoctoral researcher Marcela Raices, Ph.D., and doctoral candidate Siler H. Panowski of Dr. Andrew Dillin’s laboratory at the Salk Institute contributed to this study. The research was carried out with funding from the NIH.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health, and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>