Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaching the blood-brain barrier

14.09.2011
Researchers may have solved 100-year-old puzzle

Cornell University researchers may have solved a 100-year puzzle: How to safely open and close the blood-brain barrier so that therapies to treat Alzheimer's disease, multiple sclerosis and cancers of the central nervous system might effectively be delivered. (Journal of Neuroscience, Sept. 14, 2011.)

The researchers found that adenosine, a molecule produced by the body, can modulate the entry of large molecules into the brain. For the first time, the researchers discovered that when adenosine receptors are activated on cells that comprise the blood-brain barrier, a gateway into the blood-brain barrier can be established.

Although the study was done on mice, the researchers have also found adenosine receptors on these same cells in humans. They also discovered that an existing FDA-approved drug called Lexiscan, an adenosine-based drug used in heart imaging in very ill patients, can also briefly open the gateway across the blood-brain barrier.

The blood-brain barrier is composed of the specialized cells that make up the brain's blood vessels. It selectively prevents substances from entering the blood and brain, only allowing such essential molecules as amino acids, oxygen, glucose and water through. The barrier is so restrictive that researchers couldn't find a way to deliver drugs to the brain – until now.

"The biggest hurdle for every neurological disease is that we are unable to treat these diseases because we cannot deliver drugs into the brain," said Margaret Bynoe, associate professor of immunology at Cornell's College of Veterinary Medicine and senior author of a paper appearing Sept. 14 in the Journal of Neuroscience. Aaron Carman, a former postdoctoral associate in Bynoe's lab, is the paper's lead author. The study was funded by the National Institutes of Health.

"Big pharmaceutical companies have been trying for 100 years to find out how to traverse the blood-brain barrier and still keep patients alive," said Bynoe, who with colleagues have patented the findings and have started a company, Adenios Inc., which will be involved in drug testing and preclinical trials.

Researchers have tried to deliver drugs to the brain by modifying them so they would bind to receptors and "piggyback" onto other molecules to get across the barrier, but so far, this modification process leads to lost drug efficacy, Bynoe said.

"Utilizing adenosine receptors seems to be a more generalized gateway across the barrier," she added. "We are capitalizing on that mechanism to open and close the gateway when we want to."

In the paper, the researchers describe successfully transporting such macromolecules as large dextrans and antibodies into the brain. "We wanted to see the extent to which we could get large molecules in and whether there was a restriction on size," Bynoe said.

The researchers also successfully delivered an anti-beta amyloid antibody across the blood-brain barrier and observed it binding to beta-amyloid plaques that cause Alzheimer's in a transgenic mouse model. Similar work has been initiated for treating multiple sclerosis, where researchers hope to tighten the barrier rather than open it, to prevent destructive immune cells from entering and causing disease.

Although there are many known antagonists (drugs or proteins that specifically block signaling) for adenosine receptors in mice, future work will try to identify such drugs for humans.

The researchers also plan to explore delivering brain cancer drugs and better understand the physiology behind how adenosine receptors modulate the blood-brain barrier.

For more information about research at the College of Veterinary Medicine, visit: www.vet.cornell.edu/

Contact Joe Schwartz for information about Cornell's TV and radio studios.

Joe Schwartz | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>