Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaching the blood-brain barrier

14.09.2011
Researchers may have solved 100-year-old puzzle

Cornell University researchers may have solved a 100-year puzzle: How to safely open and close the blood-brain barrier so that therapies to treat Alzheimer's disease, multiple sclerosis and cancers of the central nervous system might effectively be delivered. (Journal of Neuroscience, Sept. 14, 2011.)

The researchers found that adenosine, a molecule produced by the body, can modulate the entry of large molecules into the brain. For the first time, the researchers discovered that when adenosine receptors are activated on cells that comprise the blood-brain barrier, a gateway into the blood-brain barrier can be established.

Although the study was done on mice, the researchers have also found adenosine receptors on these same cells in humans. They also discovered that an existing FDA-approved drug called Lexiscan, an adenosine-based drug used in heart imaging in very ill patients, can also briefly open the gateway across the blood-brain barrier.

The blood-brain barrier is composed of the specialized cells that make up the brain's blood vessels. It selectively prevents substances from entering the blood and brain, only allowing such essential molecules as amino acids, oxygen, glucose and water through. The barrier is so restrictive that researchers couldn't find a way to deliver drugs to the brain – until now.

"The biggest hurdle for every neurological disease is that we are unable to treat these diseases because we cannot deliver drugs into the brain," said Margaret Bynoe, associate professor of immunology at Cornell's College of Veterinary Medicine and senior author of a paper appearing Sept. 14 in the Journal of Neuroscience. Aaron Carman, a former postdoctoral associate in Bynoe's lab, is the paper's lead author. The study was funded by the National Institutes of Health.

"Big pharmaceutical companies have been trying for 100 years to find out how to traverse the blood-brain barrier and still keep patients alive," said Bynoe, who with colleagues have patented the findings and have started a company, Adenios Inc., which will be involved in drug testing and preclinical trials.

Researchers have tried to deliver drugs to the brain by modifying them so they would bind to receptors and "piggyback" onto other molecules to get across the barrier, but so far, this modification process leads to lost drug efficacy, Bynoe said.

"Utilizing adenosine receptors seems to be a more generalized gateway across the barrier," she added. "We are capitalizing on that mechanism to open and close the gateway when we want to."

In the paper, the researchers describe successfully transporting such macromolecules as large dextrans and antibodies into the brain. "We wanted to see the extent to which we could get large molecules in and whether there was a restriction on size," Bynoe said.

The researchers also successfully delivered an anti-beta amyloid antibody across the blood-brain barrier and observed it binding to beta-amyloid plaques that cause Alzheimer's in a transgenic mouse model. Similar work has been initiated for treating multiple sclerosis, where researchers hope to tighten the barrier rather than open it, to prevent destructive immune cells from entering and causing disease.

Although there are many known antagonists (drugs or proteins that specifically block signaling) for adenosine receptors in mice, future work will try to identify such drugs for humans.

The researchers also plan to explore delivering brain cancer drugs and better understand the physiology behind how adenosine receptors modulate the blood-brain barrier.

For more information about research at the College of Veterinary Medicine, visit: www.vet.cornell.edu/

Contact Joe Schwartz for information about Cornell's TV and radio studios.

Joe Schwartz | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>