Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brandeis inventor patents anti-cholesterol formula

19.06.2013
Daniel Perlman '68 solves phytosterol dispersability problem

Senior Brandeis research scientist Daniel Perlman ’68 has discovered a way to make phytosterol molecules from plants dispersible in beverages and foods that are consumed by humans, potentially opening the way to dramatic reductions in human cholesterol levels.

A U.S. patent (number 8,460,738) on the new process and composition was issued on June 11.

Phytosterols in plants and cholesterol molecules in animals are highly similar and when both are dispersed together they are attracted to one another. When they mix in the gut of an animal, the cholesterol molecules are competitively inhibited from passing into the blood stream and instead are excreted.
The ability of phytosterols to reduce cholesterol levels in animals has been recognized since the 1950s, but practical application of this knowledge was difficult because phytosterols are not naturally water-soluble, and they are only poorly soluble in fatty substances.

Perlman and K.C. Hayes, professor emeritus of biology and former director of the Foster Biomedical Research Laboratories, invented and patented a way to increase the bioavailability of phytosterols in fats more than 10 years ago. Their separate discoveries relating to fat metabolism and oxidative stability led to development of the Smart Balance blend of oils and a number of other food products.

However, improving dispersal of phytosterols in water has remained problematic, and was an obstacle to their general use in foods and beverages. Phytosterols placed in water-based substances will not disperse, and this has thwarted their cholesterol-reducing potential.

Now, Perlman has found a way to change the behavior of phytosterols in liquids by forming a new complex in which glycerin molecules attach to phytosterol molecules. Phytosterols and glycerin are heated together to a temperature at which the water molecule that usually attaches to each phytosterol molecule boils off and is replaced by a glycerin molecule. Because glycerin molecules have multiple places at which water molecules can be attached and because glycerin also inhibits crystal growth that complicates dispersal, the phytosterol-glycerin complex together with an emulsifier becomes dispersible in water-based foods.

“I had been playing with ideas on how to enhance the dispersability of this molecule for a number of years,” said Perlman, who has more than 100 patents and pending patents on inventions he has made in his years at Brandeis. This was critically important, he explained, because “if you really want to have widespread public health benefits, you want to be able to put [phytosterols] in foods and beverages.”

Hayes said he has tested Perlman’s new compound in his laboratory for its effects on lipoprotein metabolism with excellent results in terms of its cholesterol-reducing action.

Physics Professor Seth Fraden, who is director of the Brandeis Materials Research Science and Engineering Center, said “the actual science of how it all works” when the attachment of glycerin changes phytosterol behavior “is not understood.”

Perlman, he said, “had a chemical intuition for doing this. He is a good chemist; he has a feeling for molecules and what they’ll do when you mix them. In addition to this intuition, he is very open-minded and will go in the lab and try things that other people don’t do because their professors have told them it won’t work.

“That’s why he’s a good inventor,” Fraden said.

Charles A. Radin | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>