Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brainy worms: Evolution of the cerebral cortex

03.09.2010
EMBL scientists uncover counterpart of cerebral cortex in marine worms

Our cerebral cortex, or pallium, is a big part of what makes us human: art, literature and science would not exist had this most fascinating part of our brain not emerged in some less intelligent ancestor in prehistoric times. But when did this occur and what were these ancestors?

Unexpectedly, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have now discovered a true counterpart of the cerebral cortex in an invertebrate, a marine worm. Their findings are published today in Cell, and give an idea of what the most ancient higher brain centres looked like, and what our distant ancestors used them for.

It has long been clear that, in evolutionary terms, we share our pallium with other vertebrates, but beyond that was mystery. This is because even invertebrates that are clearly related to us – such as the fish-like amphioxus – appear to have no similar brain structures, nothing that points to a shared evolutionary past. But EMBL scientists have now found brain structures related to the vertebrate pallium in a very distant cousin – the marine ragworm Platynereis dumerilii, a relative of the earthworm - which last shared an ancestor with us around 600 million years ago.

“Two stunning conclusions emerge from this finding”, explains Detlev Arendt, who headed the study: “First, the pallium is much older than anyone would have assumed, probably as old as higher animals themselves. Second, we learn that it came ‘out of the blue’ – as an adaptation to early marine life in Precambrian oceans.”

To uncover the evolutionary origins of our brain, EMBL scientist Raju Tomer, who designed and conducted the work, took an unprecedentedly deep look at the regions of Platynereis dumerilii’s brain responsible for processing olfactory information – the mushroom-bodies. He developed a new technique, called cellular profiling by image registration (PrImR), which is the first to enable scientists to investigate a large number of genes in a compact brain and determine which are turned on simultaneously. This technique enabled Tomer to determine each cell’s molecular fingerprint, defining cell types according to the genes they express, rather than just based on their shape and location as was done before.

“Comparing the molecular fingerprints of the developing ragworms’ mushroom-bodies to existing information on the vertebrate pallium,” Tomer says, “ it became clear that they are too similar to be of independent origin and must share a common evolutionary precursor.”

This ancestral structure was likely a group of densely packed cells, which received and processed information about smell and directly controlled locomotion. It may have enabled our ancestors crawling over the sea floor to identify food sources, move towards them, and integrate previous experiences into some sort of learning.

“Most people thought that invertebrate mushroom-bodies and vertebrate pallium had arisen independently during the course of evolution, but we have proven this was most probably not the case,” says Tomer. Arendt concludes: “The evolutionary history of our cerebral cortex has to be rewritten.”

Sonia Furtado | EMBL Press Officer
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>