Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brainstem discovered as important relay site after stroke

26.02.2014
After a stroke, sufferers are often faced with the problem of severe movement impairment. Researchers at the Brain Research Institute of the University of Zurich have now discovered that the brainstem could play a major role in the recovery of motor functions. The projection of neurons from this ancient part of the brain into the spinal cord leads to the neural impulses needed for motion being rerouted.

Around 16,000 people in Switzerland suffer a stroke every year. Often the result of a sudden occlu-sion of a vessel supplying the brain, it is the most frequent live-threatening neurological disorder. In most cases, it has far-reaching consequences for survivors. Often the stroke sufferers have to cope with handicaps and rehabilitation is a long process. The brain does, however, have a “considerable capacity for regeneration” explains Lukas Bachmann from the Brain Research Institute of the University of Zurich. As member of Professor Martin Schwab’s research team, he found that the brainstem, the oldest region in the brain, could play an important role in recovery. The results have now been published in “The Journal of Neuroscience”.

The healthy half of the brain assumes control

A stroke in the cerebral cortex frequently leads to motor constraints of one half of the body, to what is known as hemiparesis. This is due to the loss of neuron pathways which transmit signals from the cortex to the spinal cord. As these pathways are crossed, the side of the body contralateral to the affected half of the brain is affected. The major impairments at the beginning are often only temporary and stroke sufferers can sometimes stage an amazing recovery. “The side of the body affected is increasingly controlled by the ipsilateral side of the cortex, i.e. the healthy side”, explains Lukas Bachmann. As the neuron pathways are crossed, this raised the following question for the neuroscientists: by which pathway are the signals rerouted from the motor cortex to the ipsilateral parts of the spinal cord?

Sprouting of neurons from the brainstem 

In their study in mice the researchers in Martin Schwab’s team now demonstrate that the brainstem probably plays a key role in the rerouting of neural impulses. Images of the brain show that after a major stroke nerve fibers from specific core regions of the brain sprout into the area of the spinal cord that had lost its input after a stroke. “At the same time, more fibers sprout from the intact cortex into these same regions of the brainstem”, continues Lukas Bachmann. These changes in the neuronal circuits may mediate the non-crossed flow of nerve impulses after a stroke. “This could turn out to be a key mechanism which facilitates recovery after a stroke”, says the brain researcher. The scientists now want to use these findings to steer the sprouting of neurons in various areas of the brain by means of targeted therapy to maximise the recovery of motor functions.

Literature:
Lukas C. Bachmann, Nicolas T. Lindau, Petra Felder, Martin E. Schwab: Sprouting of Brainstem–Spinal Tracts in Response to Unilateral Motor Cortex Stroke in Mice. The Journal of Neuroscience, February 25, 2014. Doi:10.1523/JNEUROSCI.4384-13.2014

Weitere Informationen:

http://www.mediadesk.uzh.ch/index.html

Bettina Jakob | Universität Zürich

Further reports about: Brain Cortex Neuroscience capacity cerebral disorder healthy mechanism neural pathway pathways signals stroke therapy

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>