Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brainstem discovered as important relay site after stroke

26.02.2014
After a stroke, sufferers are often faced with the problem of severe movement impairment. Researchers at the Brain Research Institute of the University of Zurich have now discovered that the brainstem could play a major role in the recovery of motor functions. The projection of neurons from this ancient part of the brain into the spinal cord leads to the neural impulses needed for motion being rerouted.

Around 16,000 people in Switzerland suffer a stroke every year. Often the result of a sudden occlu-sion of a vessel supplying the brain, it is the most frequent live-threatening neurological disorder. In most cases, it has far-reaching consequences for survivors. Often the stroke sufferers have to cope with handicaps and rehabilitation is a long process. The brain does, however, have a “considerable capacity for regeneration” explains Lukas Bachmann from the Brain Research Institute of the University of Zurich. As member of Professor Martin Schwab’s research team, he found that the brainstem, the oldest region in the brain, could play an important role in recovery. The results have now been published in “The Journal of Neuroscience”.

The healthy half of the brain assumes control

A stroke in the cerebral cortex frequently leads to motor constraints of one half of the body, to what is known as hemiparesis. This is due to the loss of neuron pathways which transmit signals from the cortex to the spinal cord. As these pathways are crossed, the side of the body contralateral to the affected half of the brain is affected. The major impairments at the beginning are often only temporary and stroke sufferers can sometimes stage an amazing recovery. “The side of the body affected is increasingly controlled by the ipsilateral side of the cortex, i.e. the healthy side”, explains Lukas Bachmann. As the neuron pathways are crossed, this raised the following question for the neuroscientists: by which pathway are the signals rerouted from the motor cortex to the ipsilateral parts of the spinal cord?

Sprouting of neurons from the brainstem 

In their study in mice the researchers in Martin Schwab’s team now demonstrate that the brainstem probably plays a key role in the rerouting of neural impulses. Images of the brain show that after a major stroke nerve fibers from specific core regions of the brain sprout into the area of the spinal cord that had lost its input after a stroke. “At the same time, more fibers sprout from the intact cortex into these same regions of the brainstem”, continues Lukas Bachmann. These changes in the neuronal circuits may mediate the non-crossed flow of nerve impulses after a stroke. “This could turn out to be a key mechanism which facilitates recovery after a stroke”, says the brain researcher. The scientists now want to use these findings to steer the sprouting of neurons in various areas of the brain by means of targeted therapy to maximise the recovery of motor functions.

Literature:
Lukas C. Bachmann, Nicolas T. Lindau, Petra Felder, Martin E. Schwab: Sprouting of Brainstem–Spinal Tracts in Response to Unilateral Motor Cortex Stroke in Mice. The Journal of Neuroscience, February 25, 2014. Doi:10.1523/JNEUROSCI.4384-13.2014

Weitere Informationen:

http://www.mediadesk.uzh.ch/index.html

Bettina Jakob | Universität Zürich

Further reports about: Brain Cortex Neuroscience capacity cerebral disorder healthy mechanism neural pathway pathways signals stroke therapy

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>