Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brainstem discovered as important relay site after stroke

26.02.2014
After a stroke, sufferers are often faced with the problem of severe movement impairment. Researchers at the Brain Research Institute of the University of Zurich have now discovered that the brainstem could play a major role in the recovery of motor functions. The projection of neurons from this ancient part of the brain into the spinal cord leads to the neural impulses needed for motion being rerouted.

Around 16,000 people in Switzerland suffer a stroke every year. Often the result of a sudden occlu-sion of a vessel supplying the brain, it is the most frequent live-threatening neurological disorder. In most cases, it has far-reaching consequences for survivors. Often the stroke sufferers have to cope with handicaps and rehabilitation is a long process. The brain does, however, have a “considerable capacity for regeneration” explains Lukas Bachmann from the Brain Research Institute of the University of Zurich. As member of Professor Martin Schwab’s research team, he found that the brainstem, the oldest region in the brain, could play an important role in recovery. The results have now been published in “The Journal of Neuroscience”.

The healthy half of the brain assumes control

A stroke in the cerebral cortex frequently leads to motor constraints of one half of the body, to what is known as hemiparesis. This is due to the loss of neuron pathways which transmit signals from the cortex to the spinal cord. As these pathways are crossed, the side of the body contralateral to the affected half of the brain is affected. The major impairments at the beginning are often only temporary and stroke sufferers can sometimes stage an amazing recovery. “The side of the body affected is increasingly controlled by the ipsilateral side of the cortex, i.e. the healthy side”, explains Lukas Bachmann. As the neuron pathways are crossed, this raised the following question for the neuroscientists: by which pathway are the signals rerouted from the motor cortex to the ipsilateral parts of the spinal cord?

Sprouting of neurons from the brainstem 

In their study in mice the researchers in Martin Schwab’s team now demonstrate that the brainstem probably plays a key role in the rerouting of neural impulses. Images of the brain show that after a major stroke nerve fibers from specific core regions of the brain sprout into the area of the spinal cord that had lost its input after a stroke. “At the same time, more fibers sprout from the intact cortex into these same regions of the brainstem”, continues Lukas Bachmann. These changes in the neuronal circuits may mediate the non-crossed flow of nerve impulses after a stroke. “This could turn out to be a key mechanism which facilitates recovery after a stroke”, says the brain researcher. The scientists now want to use these findings to steer the sprouting of neurons in various areas of the brain by means of targeted therapy to maximise the recovery of motor functions.

Literature:
Lukas C. Bachmann, Nicolas T. Lindau, Petra Felder, Martin E. Schwab: Sprouting of Brainstem–Spinal Tracts in Response to Unilateral Motor Cortex Stroke in Mice. The Journal of Neuroscience, February 25, 2014. Doi:10.1523/JNEUROSCI.4384-13.2014

Weitere Informationen:

http://www.mediadesk.uzh.ch/index.html

Bettina Jakob | Universität Zürich

Further reports about: Brain Cortex Neuroscience capacity cerebral disorder healthy mechanism neural pathway pathways signals stroke therapy

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>