Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brains, worms and computer chips have striking similarities

23.04.2010
An international team of scientists has discovered striking similarities between the human brain, the nervous system of a worm, and a computer chip. The finding is reported in the journal PloS Computational Biology today.

"Brains are often compared to computers, but apart from the trivial fact that both process information using a complex pattern of connections in a physical space, it has been unclear whether this is more than just a metaphor," said Danielle Bassett, first author and a postdoctoral research associate in the Department of Physics at UC Santa Barbara.

The team of scientists from the U.S., the U.K., and Germany has uncovered novel quantitative organizational principles that underlie the network organizations of the human brain, high performance computer circuits, and the nervous system of the worm, known as nematode C. elegans. Using data that is largely in the public domain, including magnetic resonance imaging data from human brains, a map of the nematode's nervous system, and a standard computer chip, they examined how the elements in each system are networked together.

They found that all three shared two basic properties. First, the human brain, the nematode's nervous system, and the computer chip all have a Russian doll-like architecture, with the same patterns repeating over and over again at different scales.

Second, all three showed what is known as Rent's scaling, a rule used to describe the relationship between the number of elements in a given area and the number of links between them.

Worm brains may seem to have very little in common with human brains and even less in common with computer circuits, explained Bassett. In fact, each of these systems contains a pattern of connections that are locked solidly in a physical space, similar to how the tracks in a railway system are locked solidly to the ground, forming traffic paths that have fixed GPS coordinates. A computer chip starts out as an abstract connectivity pattern, which can perform a specific function. Stage two involves mapping that connectivity pattern onto the two-dimensional surface of the chip. This mapping is a key step and must be done carefully in order to minimize the total length of wires –– a powerful predictor of the cost of manufacturing a chip –– while maintaining the abstract connectivity or function.

"Brains are similarly characterized by a precise connectivity which allows the organism to function, but are constrained by the metabolic costs associated with the development and maintenance of long 'wires,' or neurons," said Bassett. She explained that, given the similar constraints in brains and chips, it seems that both evolution and technological innovation have developed the same solutions to optimal mapping patterns.

She explained that this scaling result may further explain a well-known but little-understood relationship between the processing elements (neuronal cell bodies, or gray matter) and wiring (axons, or white matter) in the brains of a wide range of differently sized mammals –– from mouse to opossum to sea lion –– further suggesting that these principles of nervous system design are highly conserved across species.

This work suggests that market-driven human invention and natural selection have negotiated trade-offs between cost and complexity in designing both types of information processing network: brains and computer circuits.

Bassett worked closely with Edward Bullmore, professor of psychiatry at the University of Cambridge. He explained: "These striking similarities can probably be explained because they represent the most efficient way of wiring a complex network in a confined physical space –– be that a three-dimensional human brain or a two-dimensional computer chip."

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

Further reports about: Brains computer chip computer circuits human brain nervous system

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>