Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain waves

Electrical oscillations in one part of the brain suggest that it may interact with another to guide body movements

A seemingly simple action, such as picking up a pencil, actually involves complex communication between many parts of the central nervous system. Information about the pencil and its location enters the body through the eye, and eventually reaches a part of the brain called the somatosensory cortex.

There, this information seems to be encoded as two types of brain waves: gamma waves, which oscillate 30–80 times per second, and very fast oscillations (VFOs), which oscillate 80–160 times per second. These brain rhythms may then be conveyed to other parts of the brain to initiate and control the action of reaching out an arm to pick up the pencil.

If other parts of the brain also produce gamma waves and VFOs, it is possible that these brain regions could receive these signals from the somatosensory cortex, and communicate with this or other portions of the cerebral cortex to control movements. In fact, recent work measuring brain waves from the cerebellum, the part of the brain responsible for motor learning, indicates that the cerebellum may communicate with the cerebral cortex to regulate movement. A team of researchers, including Steven Middleton and Thomas Knöpfel from the RIKEN Brain Science Institute (BSI), Wako, Miles Whittington from Newcastle University, United Kingdom, and Roger Traub, now at IBM in New York, report these findings in the journal Neuron.

Tapping into brain waves

In slices from the mouse cerebellum that they had treated with nicotine, the researchers measured the frequency of oscillations using two methods: electrode recordings, and visualization of a voltage-sensitive dye. By both methods, they found that the cerebellar oscillations were a mixture of gamma waves and VFOs. These waves were almost identical in frequency to oscillations others had measured in the cerebral cortex during the same experimental conditions. This frequency match suggests that the cerebellum and cerebral cortex may exchange signals to control movement.

The cerebral cortex contains many types of neurons that are both excitatory and inhibitory. The excitatory neurons, which use glutamate as their chemical neurotransmitter, play an important role in regulating the oscillations of the cerebral cortical neuronal network. The cerebellum also contains some excitatory (granule) cells, while the rest consists of inhibitory neurons, which use GABA (γ-aminobutyric acid) as their neurotransmitter. The researchers demonstrated that the granule cells were not involved in generating the brain waves, so it was surprising that they observed these oscillations at all, since they had to have been generated by inhibitory neuronal populations only. The findings therefore indicate that brain areas with vastly different neuronal compositions can still produce similar rhythms.

Middleton, Knöpfel and colleagues also found another important difference between the cerebellum and the cerebral cortex. Oscillations in both brain regions can be triggered by activation of receptors for the neurotransmitter acetylcholine; however, the receptors in the cortex are so-called muscarinic receptors, which are not activated by nicotine, whereas the receptors in the cerebellum are triggered by nicotine. Furthermore, the cerebellar nicotine receptor that is acting to induce the brain waves seemed to be a ‘nonclassical’ nicotine receptor.

Unraveling neuronal communication

The network oscillations in the cerebral cortex occur due, in part, to gap junctions between cortical neurons, in which electrical activity in one cell can spread through channels that connect that neuron directly to its partner. The researchers also found many pieces of evidence that suggest that electrical connections also exist between cerebellar neurons.

First, they showed that a dye injected into a cerebellar output neuron, called the Purkinje cell, could diffuse to its neighboring local cerebellar interneuron, called a basket cell or a stellate cell. Then, they blocked all chemical communication that occurs in the spaces between neurons, called ‘synaptic neurotransmission’, by removing calcium ions from the solution bathing the cerebellar slices, and still observed VFOs. Finally, they blocked gap junctions with a drug, and this manipulation was sufficient to block both the gamma waves and the VFOs. Their results suggest that direct electrical connections between cerebellar neurons may be one mechanism by which network oscillations are regulated.

Visualizing the source of brain waves

Middleton, Knöpfel and colleagues then used electrical and optical recordings to pinpoint the area of the cerebellum which was responsible for generating the gamma waves and the VFOs. “Optical voltage imaging is a technique for which the RIKEN BSI Laboratory for Neuronal Circuit Dynamics attains world-wide recognition,” says Knöpfel. ”We are expecting that the use of optical voltage imaging in this research field will increase over the coming years.”

The researchers also confirmed their findings in slices from the human cerebellum, suggesting that the data could also be relevant to motor function in humans. Because the oscillations were stimulated by nicotine, the findings imply that nicotine from cigarette smoking may have effects on motion—such as tremor—owing to effects on network oscillations in the cerebellum.

This research provides insight into how the cerebellum and cerebral cortex may communicate with each other to create, organize, and control movements. The researchers believe that their work establishes a new approach to the understanding of how the cerebellum handles information, suggesting that, as in cerebral cortex, oscillations are used for temporal coding of information.

“Startup of this exciting new research was made possible through a generous one-year grant from the directors’ fund of former BSI director Shunichi Amari,” explains Knöpfel. “While we have established the mechanisms underlying cerebellar oscillation generation, we now aim to study the behavioral correlates of these rhythms,” say Middleton and Knöpfel.

1. Middleton, S.J., Racca, C., Cunningham, M.O., Traub, R.D., Monyer, H., Knöpfel, T., Schofield, I.S., Jenkins, A. & Whittington, M.A. High-frequency network oscillations in cerebellar cortex. Neuron 58, 763–774 (2008).

The corresponding authors for this highlight are based at the RIKEN Laboratory for Neuronal Circuit Dynamics

Saeko Okada | ResearchSEA
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>