Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the brain stays receptive: researchers examine the role of channel protein in learning

09.01.2013
PLoS ONE: Pannexin1 is critical for memory and orientation

The channel protein Pannexin1 keeps nerve cells flexible and thus the brain receptive for new knowledge. Together with colleagues from Canada and the U.S., researchers at the Ruhr-Universität Bochum led by the junior professor Dr. Nora Prochnow from the Department of Molecular Brain Research describe these results in PLoS ONE.


Micrograph of the hippocampus: The blue curves show the long-term potentiation in mice with (left) and without Pannexin1 (right). Brains of animals without the channel protein respond especially sensitively to small stimuli, as the big difference between the light and dark blue curve shows. The data is based on original measurements of the study.
Image: Nora Prochnow

In the study, mice comprising no Pannexin1 in memory-related brain structures displayed symptoms similar to autism. Their nerve cells lacked synaptic plasticity, i.e. the ability to form new synaptic contacts or give up old contacts based on the level of usage.

Pannexins are abundant in the central nervous system of vertebrates

Pannexins traverse the cell membrane of vertebrate animals and form large pored channels. They are permeable for certain signalling molecules, such as the energy storage molecule ATP (adenosine triphosphate). The best known representative is Pannexin1, which occurs in abundance in the brain and spinal cord and among others in the hippocampus - a brain structure that is critical for long-term memory. Malfunctions of the pannexins play a role in the development of epilepsy and strokes.

No more scope in long-term potentiation

The research team studied mice in which the gene for Pannexin1 was lacking. Using cell recordings carried out on isolated brain sections, they analysed the long-term potentiation in the hippocampus. Long-term potentiation usually occurs when new memory content is built - the contacts between nerve cells are strengthened; they communicate more effectively with each other. In mice without Pannexin1, the long-term potentiation occurred earlier and was more prolonged than in mice with Pannexin1. “It looks at first glance like a gain in long-term memory”, says Nora Prochnow. “But precise analysis shows that there was no more scope for upward development.” Due to the lack of Pannexin1, the cell communication in general was increased to such an extent that a further increase through the learning of new knowledge was no longer possible. The synaptic plasticity was thus extremely restricted. “The plasticity is essential for learning processes in the brain”, Nora Prochnow explains. “It helps you to organise, keep or even to forget contents in a positive sense, to gain room for new inputs.”

Autistic-like behaviour without Pannexin1

The absence of Pannexin1 also had an impact on behaviour: when solving simple problems, the animals were quickly overwhelmed in terms of content. Their spatial orientation was limited, their attention impaired and an increased probability for seizure generation occurred. “The behavioural patterns are reminiscent of autism. We should therefore consider the Pannexin1 channel more closely with regard to the treatment of such diseases”, says the neurobiologist from Bochum.

Theory: feedback regulation gets out of hand without Pannexin1

According to the scientists’ theory, nerve cells lack a feedback mechanism without Pannexin1. Normally the channel protein releases ATP, which binds to specific receptors and thus reduces the release of the neurotransmitter glutamate. Without Pannexin1 more glutamate is released, which leads to increased long-term potentiation. This causes the cell to lose its dynamic equilibrium, which is needed for an efficient learning process.

Bibliographic record

N. Prochnow, A. Abdulazim, S. Kurtenbach, V. Wildförster, G. Dvoriantchikova , J. Hanske, E. Petrasch-Parwez, V.I. Shestopalov, R. Dermietzel, D. Manahan-Vaughan, G. Zoidl (2012): Pannexin1 stabilizes synaptic plasticity and is needed for learning, PLoS ONE , DOI: 10.1371/journal.pone.0051767

Further information

Prof. Dr. Nora Prochnow, Department of Molecular Brain Research, Faculty of Medicine, 44780 Bochum, Germany, Tel. +49/234/32-24406, E-Mail: Nora.Prochnow@ruhr-uni-bochum.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>