Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the brain stays receptive: researchers examine the role of channel protein in learning

09.01.2013
PLoS ONE: Pannexin1 is critical for memory and orientation

The channel protein Pannexin1 keeps nerve cells flexible and thus the brain receptive for new knowledge. Together with colleagues from Canada and the U.S., researchers at the Ruhr-Universität Bochum led by the junior professor Dr. Nora Prochnow from the Department of Molecular Brain Research describe these results in PLoS ONE.


Micrograph of the hippocampus: The blue curves show the long-term potentiation in mice with (left) and without Pannexin1 (right). Brains of animals without the channel protein respond especially sensitively to small stimuli, as the big difference between the light and dark blue curve shows. The data is based on original measurements of the study.
Image: Nora Prochnow

In the study, mice comprising no Pannexin1 in memory-related brain structures displayed symptoms similar to autism. Their nerve cells lacked synaptic plasticity, i.e. the ability to form new synaptic contacts or give up old contacts based on the level of usage.

Pannexins are abundant in the central nervous system of vertebrates

Pannexins traverse the cell membrane of vertebrate animals and form large pored channels. They are permeable for certain signalling molecules, such as the energy storage molecule ATP (adenosine triphosphate). The best known representative is Pannexin1, which occurs in abundance in the brain and spinal cord and among others in the hippocampus - a brain structure that is critical for long-term memory. Malfunctions of the pannexins play a role in the development of epilepsy and strokes.

No more scope in long-term potentiation

The research team studied mice in which the gene for Pannexin1 was lacking. Using cell recordings carried out on isolated brain sections, they analysed the long-term potentiation in the hippocampus. Long-term potentiation usually occurs when new memory content is built - the contacts between nerve cells are strengthened; they communicate more effectively with each other. In mice without Pannexin1, the long-term potentiation occurred earlier and was more prolonged than in mice with Pannexin1. “It looks at first glance like a gain in long-term memory”, says Nora Prochnow. “But precise analysis shows that there was no more scope for upward development.” Due to the lack of Pannexin1, the cell communication in general was increased to such an extent that a further increase through the learning of new knowledge was no longer possible. The synaptic plasticity was thus extremely restricted. “The plasticity is essential for learning processes in the brain”, Nora Prochnow explains. “It helps you to organise, keep or even to forget contents in a positive sense, to gain room for new inputs.”

Autistic-like behaviour without Pannexin1

The absence of Pannexin1 also had an impact on behaviour: when solving simple problems, the animals were quickly overwhelmed in terms of content. Their spatial orientation was limited, their attention impaired and an increased probability for seizure generation occurred. “The behavioural patterns are reminiscent of autism. We should therefore consider the Pannexin1 channel more closely with regard to the treatment of such diseases”, says the neurobiologist from Bochum.

Theory: feedback regulation gets out of hand without Pannexin1

According to the scientists’ theory, nerve cells lack a feedback mechanism without Pannexin1. Normally the channel protein releases ATP, which binds to specific receptors and thus reduces the release of the neurotransmitter glutamate. Without Pannexin1 more glutamate is released, which leads to increased long-term potentiation. This causes the cell to lose its dynamic equilibrium, which is needed for an efficient learning process.

Bibliographic record

N. Prochnow, A. Abdulazim, S. Kurtenbach, V. Wildförster, G. Dvoriantchikova , J. Hanske, E. Petrasch-Parwez, V.I. Shestopalov, R. Dermietzel, D. Manahan-Vaughan, G. Zoidl (2012): Pannexin1 stabilizes synaptic plasticity and is needed for learning, PLoS ONE , DOI: 10.1371/journal.pone.0051767

Further information

Prof. Dr. Nora Prochnow, Department of Molecular Brain Research, Faculty of Medicine, 44780 Bochum, Germany, Tel. +49/234/32-24406, E-Mail: Nora.Prochnow@ruhr-uni-bochum.de

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>