Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain’s Master Switch Is Verified by Researcher

11.05.2010
The protein that has long been suspected by scientists of being the master switch allowing brains to function has now been verified by an Iowa State University researcher.

Yeon-Kyun Shin, professor of biochemistry, biophysics and molecular biology at ISU, has shown that the protein called synaptotagmin1 (Syt1) is the sole trigger for the release of neurotransmitters in the brain.

Prior to this research, Syt1 was thought to be a part of the protein structure (not the sole protein) that triggered the release of neurotransmitters at 10 parts per million of calcium.

Shin’s research is published in the current issue of the journal Science.

“Syt1 was a suspect previously, but people were not able to pinpoint that it’s the real one, even though there were lots and lots of different trials,” said Shin.

“In this case, we are trying to show in the laboratory that it’s the real one. So we excluded everything else, and included SNARE proteins -- that’s the machinery of the release, and the Syt1 is a calcium-sensing timer.”

Syt1 senses, at 10 ppm of calcium, and tells the SNARE complex to open the pore to allow the movement of the neurotransmitters.

Brain activity occurs when neurotransmitters move into a fusion pore.

“We are showing that this Syt1 senses the calcium at 10 ppm, and sends the signal to the SNARE complex to open the fusion pore. That is the process that we are showing right now,” Shin said.

Shin and his researchers were able to pinpoint the protein using a new technique called single vesicle fusion method. Using this method, they were able to create and monitor a single fusion event.

Previous research didn’t allow scientists to look at single events, and instead required detecting many events and then taking an average of those events, Shin says.

Shin, who has been looking at this brain activity for 15 years, is happy about the discovery.

“We are quite excited that for the first time we are showing that Syt1 is really what triggers the signal in the brain,” he said. “This is a really important thing in terms of neurosciences. This is the heart of the molecular part of the brain function.”

Shin believes his discovery may be useful in understanding brain malfunctions such as autism, epilepsy and others.

While researching brain function, Shin has previously shown that taking statin drugs to lower cholesterol may actually inhibit some brain function.

Yeon-Kyun Shin, Biochemistry, Biophysics, Molecular Biology, (515) 294-2530,
colishin@iastate.edu

Yeon-Kyun Shin | Newswise Science News
Further information:
http://www.iastate.edu

Further reports about: SNARE Switch Syt1 brain function neurotransmitters synaptotagmin1

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>