Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain rewires itself after damage or injury, life scientists discover

16.05.2013
When the brain's primary "learning center" is damaged, complex new neural circuits arise to compensate for the lost function, say life scientists from UCLA and Australia who have pinpointed the regions of the brain involved in creating those alternate pathways — often far from the damaged site.

The research, conducted by UCLA's Michael Fanselow and Moriel Zelikowsky in collaboration with Bryce Vissel, a group leader of the neuroscience research program at Sydney's Garvan Institute of Medical Research, appears this week in the early online edition of the journal Proceedings of the National Academy of Sciences.

The researchers found that parts of the prefrontal cortex take over when the hippocampus, the brain's key center of learning and memory formation, is disabled. Their breakthrough discovery, the first demonstration of such neural-circuit plasticity, could potentially help scientists develop new treatments for Alzheimer's disease, stroke and other conditions involving damage to the brain.

For the study, Fanselow and Zelikowsky conducted laboratory experiments with rats showing that the rodents were able to learn new tasks even after damage to the hippocampus. While the rats needed more training than they would have normally, they nonetheless learned from their experiences — a surprising finding.

"I expect that the brain probably has to be trained through experience," said Fanselow, a professor of psychology and member of the UCLA Brain Research Institute, who was the study's senior author. "In this case, we gave animals a problem to solve."

After discovering the rats could, in fact, learn to solve problems, Zelikowsky, a graduate student in Fanselow's laboratory, traveled to Australia, where she worked with Vissel to analyze the anatomy of the changes that had taken place in the rats' brains. Their analysis identified significant functional changes in two specific regions of the prefrontal cortex.

"Interestingly, previous studies had shown that these prefrontal cortex regions also light up in the brains of Alzheimer's patients, suggesting that similar compensatory circuits develop in people," Vissel said. "While it's probable that the brains of Alzheimer's sufferers are already compensating for damage, this discovery has significant potential for extending that compensation and improving the lives of many."

The hippocampus, a seahorse-shaped structure where memories are formed in the brain, plays critical roles in processing, storing and recalling information. The hippocampus is highly susceptible to damage through stroke or lack of oxygen and is critically inolved in Alzheimer's disease, Fanselow said.

"Until now, we've been trying to figure out how to stimulate repair within the hippocampus," he said. "Now we can see other structures stepping in and whole new brain circuits coming into being."

Zelikowsky said she found it interesting that sub-regions in the prefrontal cortex compensated in different ways, with one sub-region — the infralimbic cortex — silencing its activity and another sub-region — the prelimbic cortex — increasing its activity.

"If we're going to harness this kind of plasticity to help stroke victims or people with Alzheimer's," she said, "we first have to understand exactly how to differentially enhance and silence function, either behaviorally or pharmacologically. It's clearly important not to enhance all areas. The brain works by silencing and activating different populations of neurons. To form memories, you have to filter out what's important and what's not."

Complex behavior always involves multiple parts of the brain communicating with one another, with one region's message affecting how another region will respond, Fanselow noted. These molecular changes produce our memories, feelings and actions.

"The brain is heavily interconnected — you can get from any neuron in the brain to any other neuron via about six synaptic connections," he said. "So there are many alternate pathways the brain can use, but it normally doesn't use them unless it's forced to. Once we understand how the brain makes these decisions, then we're in a position to encourage pathways to take over when they need to, especially in the case of brain damage.

"Behavior creates molecular changes in the brain; if we know the molecular changes we want to bring about, then we can try to facilitate those changes to occur through behavior and drug therapy," he added. I think that's the best alternative we have. Future treatments are not going to be all behavioral or all pharmacological, but a combination of both."

Fanselow and Vissel have worked closely over the last several years. For more information on Fanselow's research, visit the Fanselow Lab website. For more on the Garvan Institute of Medical Research, visit their website.

The research was funded by the National Institute of Mental Health (grant MH 62122), part of the National Institutes of Health, and by the National Science Foundation (EAPSI award 0914307 to Zelikowsky).

UCLA is California's largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and six faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>