Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain research: memories come quicker than expected

18.01.2013
The brain can recall memories faster than previously assumed. A team of experts under the direction of neuroscientist Emrah Düzel, who is based in Magdeburg, Germany, was able to show this through a series of memory tests.
31 test subjects were charged with the task of identifying words they had been shown previously. Recognition was triggered in significantly less than half a second after a word reappeared. Previous tests had indicated longer reaction times. The study has been published in “Current Biology.”

The researchers also gained other insights in the way the human memory works. They were able to prove that the hippocampus – the brain’s memory center – does trigger the recall of specific memories, while it is not involved in the development of fuzzy sensations of familiarity. This finding sheds light on the effects of Alzheimer’s disease.
Our brain utilizes a broad spectrum of memories that have been stored over time. Regardless of whether we recognize a familiar melody, remember the birthday of the partner we live with or whether we subconsciously recall certain sequences of motion we have practiced many times when we ride a bicycle – the processes that happen in our brain are distinct in each case. One of the major goals of memory research is to find out, what areas of the brain are involved in every single one of these processes. The hippocampus is known to be an important player. “This part of the brain is a switch board for the processing of content we recall and is extremely important for the long-term memory,” explains Professor Düzel, who conducts research at the German Center for Neurodegenerative Diseases (DZNE) in Magdeburg and the local Otto-von-Guericke University. “Individuals who have sustained injuries to their hippocampus have a hard time to remember past events or may not even remember them at all. Furthermore, they can recall recent incidents only for a very short time.”

However, investigations performed until now provided contradicting results concerning the role of the hippocampus. “Is the hippocampus responsible for specific memories only or also for conveying sensations of familiarity? This was an open question in memory research,” says the neuroscientist. He explains the issue by using an example: “If we recognize another human being, we occasionally find ourselves unable to associate the person with other circumstances. We feel that we know this person, but have no idea how or where we met him or her.” In such cases we are unable to make the mental connection, Düzel emphasizes and adds: “On the other hand, if I am certain that I recently met this person at a party, the context is present in my mind. Such a memory recollection, we call it context memory, is much more specific than a sketchy sense of familiarity.”

Memory test based on images and words

Düzel and his colleagues were eager to shed some light on the controversy: does the hippocampus communicate merely those memories that are linked to context or also a sense of familiarity? To answer this question, they called in 31 test subjects to conduct a memory test. Participants were asked to recognize words and to link them to images they had been shown earlier. Of this study group, 14 were healthy. The remaining participants had sustained damage to their hippocampus as a result of a preexisting condition and the volume of this area of the brain was smaller than in the case of healthy subjects. Consequently, the test participants differed in terms of the memory capacity, but they all had similar IQs and levels of education.

The tests were performed at London’s University College, where Düzel’s team conducted its investigations in cooperation with brain researcher Faraneh Vargha-Khadem from the Institute of Child Health. The test procedure: the participants were shown pairs of pictures and words on a screen, always one pair at a time. After some delay, new and old terms were presented without an image. Now, the participants were supposed to recognize words they had previously seen. Afterwards, they had to pick out the associated image from a collection of photographs. At the same time, brain activity of all participants was recorded via magnetoencephalography (MEG).

The conclusion: In the ability to remember words, this part of the test focused on the sense of familiarity, no difference was found between patients and healthy participants. However, when it came to the allocation of the correct image, there were marked differences. In other words, when terms had to be embedded into a visual context, the hit rate correlated with the volume of the hippocampus: the larger this area of the brain, the better the results achieved by the participants.
“This allows us to conclude that the hippocampus plays a prominent role in the recall process for context related memories. However, it is not involved in the generation of a sense of familiarity. We are now able to prove this with certainty,” comments Düzel as he sums up the outcome of the experiment. “In principle, it is possible to recognize things without a hippocampus. However, it is impossible to make pertinent associations. The ability to recall specific memories is lacking. Such symptoms are typical to Alzheimer’s, which damages the hippocampus. Our findings help us to understand how memory functions are affected by this disease.”

Remembering starts earlier than previously assumed

The MEG also provided interesting insights. It enabled the researchers to track the reactions in the brains of their test subjects. “Whenever our brain associates memory content with a context, we refer to it as pattern completion. We now have a better understanding of the time sequences involved in this process,” explains Düzel. “We see a signal in our data that is like a precursor to a memory. It has a pattern similar to those neural signatures that accompany a sense of familiarity. Hence, recollection processes are triggered by familiarity and therefore begin earlier than initially presumed.”

The scientists were able to measure this rapid response with great precision. For this, they registered the time span between the appearance of the word test subjects were supposed to recognize and their brain response. “We were able to prove that recollection processes are initiated after just about 350 milliseconds. That is considerably faster than we had presumed. According to tests conducted in the past we expected a much longer delay of about half a second. As a result, we now have a better understanding of the timing of memory processes,” observes Düzel.

Original publication:
“A Rapid, Item-Initiated, Hippocampus-Dependent Neural Signature of Context Memory in Humans”, Aidan J. Horner, David G. Gadian, Lluis Fuentemilla, Sebastien Jentschke, Faraneh Vargha-Khadem and Emrah Düzel, Current Biology, online at: http://www.cell.com/current-biology/retrieve/pii/S0960982212013103

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution of the Helmholtz Association with sites in Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten. The DZNE cooperates closely with universities, their clinics and other research facilities. Co-operation partners in Magdeburg are the Otto-von-Guericke University, the University Clinic and the Leibniz-Institute for Neurobiology.

Dr. Marcus Neitzert | idw
Further information:
http://www.dzne.de/en

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>