Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Brain Protein

23.07.2012
Surprising Discovery: Brain Variants of Protein Associated with Huntington's and Other Neurodegenerative Diseases Identified

A protein essential for metabolism and recently associated with neurodegenerative diseases also occurs in several brain-specific forms. This discovery emerged in the course of a research project funded by the Austrian Science Fund FWF, the findings of which have now been published in the journal Human Molecular Genetics. The scientists working on the project discovered a large new region in the genetic code of the protein PGC-1alpha.

Previously unknown variations of the protein, which can be found specifically in the brain, are produced from this region. This discovery may provide tissue-specific starting points for the development of new treatments for neurodegenerative diseases like Huntington´s, Parkinson´s and Alzheimer´s.

PGC-1alpha is a real jack-of-all-trades. As a central regulator of metabolic genes that coordinate energy metabolism, the protein, which functions as a "transcriptional coactivator", influences major body functions. The extent to which the protein also influences medical conditions like obesity, diabetes and metabolic syndrome is unclear, and was under further investigation as part of a research project funded by the Austrian Science Fund FWF. In the course of their research, however, the scientists stumbled on unexpected findings with a particular relevance for neurodegenerative diseases.

MAJOR DIFFERENCE

A research team headed by Prof. Wolfgang Patsch from the Departments of Pharmacology and Toxicology, and Laboratory Medicine at the Paracelsus Medical University established that the gene which codes for PGC-1alpha (PPARGC1A) is six times larger than hitherto assumed. A new promoter was actually found at some distance (ca. 580 kb) from the previously known gene. A promoter is a DNA segment usually occurring upstream from a gene that can ultimately control how that gene is expressed as a protein. The transmission of genetic information from DNA to RNA molecules, i.e. transcription, is an important intermediate step in this process.

Transcripts, which are produced from the newly discovered promoter, were now examined in detail as part of the research project. "These transcripts differ in important regions from those encoded by the previously characterised - reference - PPARGC1A locus. Based on these differences, we were able to show that these previously unknown transcripts are produced specifically in human brain cells and are at least as common there as the reference transcripts," explains Dr. Selma M. Soyal, first author of the article currently published in Human Molecular Genetics. Further analyses showed that the differences in the transcripts lead to the formation of proteins which differ from the protein that acts as a reference, in particular at the N-terminus. Other differences were found within the PGC-1alpha amino acid chain.

When the different PGC-1alpha proteins were localised in human cells (SH-SY5Y), another surprise awaited the scientists: whereas the reference protein was located mainly in the cell nucleus, one of the newly discovered variants was mainly found in the surrounding cytoplasm; another was found both in the nucleus and in the cytoplasm. According to Prof. Patsch: "It is likely that the differences we found in the transcripts influence mechanisms in the finished proteins which control their localisation in the cell."

A PROTEIN WITH IMPACT

The detailed functional characterisation of the brain-specific proteins could prove significant, as PGC-1alpha is associated with various neurodegenerative diseases such as Huntington´s disease, Parkinson´s and Alzheimer´s - a link that was also confirmed by the project. Using complex statistical analyses, sequence differences in the new promoter were examined in 1.706 Huntington patients as part of a collaboration with the European Huntington´s Disease Network. A clear correlation emerged here between different sequence patterns and the age of onset of the disease in the patients. In addition, the scientists were also able to show that the newly discovered promoter is active in nerve tissue. This indicates that it may actually play an important role in the only partly known links between PGC-1alpha and the neurodegenerative diseases in question.

Overall, the findings of this project, which is funded by the Austrian Science Fund FWF, indicate complex functions of PGC-1alpha in humans. If the scientists succeed in reaching a better understanding of this complexity, PGC-1alpha could provide new possibilities for future therapeutic intervention in key neurodegenerative diseases.

Image and text available from Monday, 23 July 2012, at 09.00 CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201207-en.html
Original publication: A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset. S. M. Soyal, T. K. Felder, S. Auer, P. Hahne, H. Oberkofler, A. Witting, M. Paulmichl, G. B. Landwehrmeyer, P. Weydt, W. Patsch and For the European Huntington Disease Network. Human Molecular Genetics, 2012, doi: 10.1093/hmg/dds177
Scientific Contact:
Prof. Wolfgang Patsch
Paracelsus Medical University
Department of Pharmacology and Toxicology Strubergasse 21
5020 Salzburg, Austria
T +43 / (0)662 / 442002 - 1231 and 1236
E wolfgang.patsch@pmu.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for Research & Development Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Margot Pechtigam | PR&D
Further information:
http://www.fwf.ac.at
http://www.fwf.ac.at/en/public_relations/press/pv201207-en.html

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>