Brain neurons and diet influence onset of obesity and diabetes in mice

Brain neurons and diet influence onset of obesity and diabetes in mice<br><br>Credit: Uta Mackensen, EMBO<br>

The absence of a specific type of neuron in the brain can lead to obesity and diabetes in mice report researchers in The EMBO Journal. The outcome, however, depends on the type of diet that the animals are fed.

A lack of AgRP-neurons, brain cells known to be involved in the control of food intake, leads to obesity if mice are fed a regular carbohydrate diet. However, animals that are deficient in AgRP-neurons but which are raised on a high-fat diet are leaner and healthier. The differences are due to the influence of the AgRP-neurons on the way other tissues in the body break down and store nutrients. Mice lacking AgRP-neurons adapt poorly to a carbohydrate diet and their metabolism seems better suited for feeding on fat.

“Susceptibility to obesity and other metabolic diseases is mostly thought to be due to complex genetic interactions and the radical environmental changes that have occurred during the last century. However, it is not just a question of what you eat and your genetic makeup but also how the body manages to convert, store and use food nutrients,” commented Serge Luquet, lead author of the study and a researcher at the French Centre National de la Recherche Scientifique (CNRS) Unit of Functional and Adaptive Biology, Université Paris Diderot, Sorbonne Paris Cité.
The scientists wanted to show if a primary setting in the brain might directly affect the relative balance that exists in peripheral tissue between storage, conversion and utilization of carbohydrate and lipids. “The idea that we wanted to test in our experiments was whether the action of a specific type of brain cell known as the AgRP-neuron extended beyond its known influence on food intake. We found a new function for these cells, one that affects the communication with and activities of other tissues in the body including the liver, muscle and the pancreas,” added Luquet.

The researchers showed that mice that lacked AgRP-neurons from birth and which were fed on a regular carbohydrate diet had excessive body fat, increased amounts of the sugar-regulating hormone insulin, and normal levels of glucose in the blood. When the same animals were fed a high fat diet they showed a reduced gain in body weight and improved glucose clearance in the blood.

“Our work shows that central circuits in the brain that control food intake also control how nutrients are used in peripheral organs of the body,” remarked Luquet. “This further role for AgRP-neurons might represent a core mechanism linking obesity and obesity-related diseases.”

The prevalence of obesity and other metabolic diseases is increasing rapidly and effective and safe treatments are urgently needed. Obesity adversely affects health, decreases life expectancy, and increases the likelihood of other diseases including heart disease and type II diabetes. “Understanding the mechanisms by which the brain controls how nutrients are metabolized and stored in peripheral organs may prove essential to achieving a clinical breakthrough for these debilitating diseases,” added Luquet.
Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning

Aurélie Joly-Amado, Raphaël GP Denis, Julien Castel, Amélie Lacombe, Céline Cansell, Claude Rouch, Nadim Kassis, Julien Dairou, Patrice D Cani, Renée Ventura-Clapier, Alexandre Prola, Melissa Flamment, Fabienne Foufelle, Christophe Magnan, Serge Luquet

Read the paper:
The paper is available at http://www.nature.com/emboj/journal/vaop/ncurrent/index.html
doi: emboj.2012.250

Further information on The EMBO Journal is available at http://www.nature.com/emboj

Media Contacts
Barry Whyte
Head | Public Relations and Communications

Yvonne Kaul
Communications Offer
Tel: +49 6221 8891 108/111
communications@embo.org

About EMBO
EMBO stands for excellence in the life sciences. The organization enables the best science by supporting talented researchers, stimulating scientific exchange and advancing policies for a world-class European research environment.

EMBO is an organization of 1500 leading life scientist members that fosters new generations of researchers to produce world-class scientific results. EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in cutting-edge techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Media Contact

Yvonne Kaul EMBO

More Information:

http://www.embo.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors