Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain neurons and diet influence onset of obesity and diabetes in mice

18.09.2012
The absence of a specific type of neuron in the brain can lead to obesity and diabetes in mice report researchers in The EMBO Journal. The outcome, however, depends on the type of diet that the animals are fed.
The absence of a specific type of neuron in the brain can lead to obesity and diabetes in mice report researchers in The EMBO Journal. The outcome, however, depends on the type of diet that the animals are fed.

A lack of AgRP-neurons, brain cells known to be involved in the control of food intake, leads to obesity if mice are fed a regular carbohydrate diet. However, animals that are deficient in AgRP-neurons but which are raised on a high-fat diet are leaner and healthier. The differences are due to the influence of the AgRP-neurons on the way other tissues in the body break down and store nutrients. Mice lacking AgRP-neurons adapt poorly to a carbohydrate diet and their metabolism seems better suited for feeding on fat.

“Susceptibility to obesity and other metabolic diseases is mostly thought to be due to complex genetic interactions and the radical environmental changes that have occurred during the last century. However, it is not just a question of what you eat and your genetic makeup but also how the body manages to convert, store and use food nutrients,” commented Serge Luquet, lead author of the study and a researcher at the French Centre National de la Recherche Scientifique (CNRS) Unit of Functional and Adaptive Biology, Université Paris Diderot, Sorbonne Paris Cité.
The scientists wanted to show if a primary setting in the brain might directly affect the relative balance that exists in peripheral tissue between storage, conversion and utilization of carbohydrate and lipids. “The idea that we wanted to test in our experiments was whether the action of a specific type of brain cell known as the AgRP-neuron extended beyond its known influence on food intake. We found a new function for these cells, one that affects the communication with and activities of other tissues in the body including the liver, muscle and the pancreas,” added Luquet.

The researchers showed that mice that lacked AgRP-neurons from birth and which were fed on a regular carbohydrate diet had excessive body fat, increased amounts of the sugar-regulating hormone insulin, and normal levels of glucose in the blood. When the same animals were fed a high fat diet they showed a reduced gain in body weight and improved glucose clearance in the blood.

“Our work shows that central circuits in the brain that control food intake also control how nutrients are used in peripheral organs of the body,” remarked Luquet. “This further role for AgRP-neurons might represent a core mechanism linking obesity and obesity-related diseases.”

The prevalence of obesity and other metabolic diseases is increasing rapidly and effective and safe treatments are urgently needed. Obesity adversely affects health, decreases life expectancy, and increases the likelihood of other diseases including heart disease and type II diabetes. “Understanding the mechanisms by which the brain controls how nutrients are metabolized and stored in peripheral organs may prove essential to achieving a clinical breakthrough for these debilitating diseases,” added Luquet.
Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning

Aurélie Joly-Amado, Raphaël GP Denis, Julien Castel, Amélie Lacombe, Céline Cansell, Claude Rouch, Nadim Kassis, Julien Dairou, Patrice D Cani, Renée Ventura-Clapier, Alexandre Prola, Melissa Flamment, Fabienne Foufelle, Christophe Magnan, Serge Luquet

Read the paper:
The paper is available at http://www.nature.com/emboj/journal/vaop/ncurrent/index.html
doi: emboj.2012.250

Further information on The EMBO Journal is available at http://www.nature.com/emboj

Media Contacts
Barry Whyte
Head | Public Relations and Communications

Yvonne Kaul
Communications Offer
Tel: +49 6221 8891 108/111
communications@embo.org

About EMBO
EMBO stands for excellence in the life sciences. The organization enables the best science by supporting talented researchers, stimulating scientific exchange and advancing policies for a world-class European research environment.

Brain neurons and diet influence onset of obesity and diabetes in mice

Credit: Uta Mackensen, EMBO

EMBO is an organization of 1500 leading life scientist members that fosters new generations of researchers to produce world-class scientific results. EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in cutting-edge techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO
Further information:
http://www.embo.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>