Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain metastases hijack neuron-supporting cells to resist chemotherapy

21.04.2009
Surgery works best when tumor removed intact

Cancer that spreads to other organs finds a particularly inviting hideout in the brain, where these metastases are usually far harder to treat than they are in other locations. Two researchers from The University of Texas M. D. Anderson Cancer Center discussed ways to more successfully target these tumors in their "sanctuary" at the American Association for Cancer Research 100th Annual Meeting 2009 in Denver.

Professor of Cancer Biology Isaiah J. Fidler, D.V.M., Ph.D., presented a novel theory about why brain metastases are resistant to chemotherapy.

"Astrocytes are spider-like cells that normally play the important role of providing oxygen and nutrients to neurons, and protecting neurons from naturally occurring toxins," Fidler said. "We show that brain metastases subvert astrocytes, tricking them into protecting the tumors, and that this is the important factor in resistance to chemotherapy."

Professor and Chair of Neurosurgery Raymond Sawaya, M.D., reviewed when and how to conduct surgery to remove metastatic tumors, including evidence that removing a tumor piecemeal raises the risk of cancer irretrievably spreading to the spinal fluid.

Fidler and Sawaya were among five speakers at "Invading the Sanctuary: New approaches to Brain Metastasis." Metastatic cancer causes the vast majority of cancer deaths. There are more than 100,000 new cases of metastatic brain cancer each year. By comparison, primary malignant brain tumors account for about 17,000 new cases annually.

Not all cancers spread to the brain. Sawaya lists lung, breast, melanoma, kidney and colon cancer as the most common. "It's common for us to operate on patients who no longer have known disease except for the metastasis in the brain," Sawaya said. Such patients have a better prognosis than those with heavier tumor burden elsewhere.

Research Shows Astrocytes Negate Chemotherapy

"The only way metastases can grow in an organ is to exploit the host organ's microenvironment," said Fidler, who with a series of experiments revived the seed-and-soil theory of metastasis first suggested by British physician Steven Paget more than 100 years ago. Paget argued that metastasis was not a random process, but that specific cancers spread only to certain organs – those who served as welcoming "soil" for specific cancer "seeds."

Fidler and colleagues examined alternate hypotheses for chemotherapy resistance. The blood-brain barrier, a tightness to brain vasculature that blocks blood-born toxins from entering the brain, was a prime suspect. They found that the barrier remains intact outside a metastasis, but breaks down inside metastases, which generally have leaky vasculature.

Another theory is that the P glycoprotein (PGP), a membrane protein that expels drugs from a cell's cytoplasm, blocks chemotherapy. "Our work and others' showed that using drugs that are totally resistant to PGP, or blocking PGP itself, did not improve survival," Fidler said.

The team turned to astrocytes, which are extremely sensitive to activation by hypoxia and inflammatory cytokines. "Every single metastasis in the brain and primary tumors are surrounded by activated astrocytes," Fidler said.

In a mouse with lung cancer or breast cancer brain metastases, astrocytes surrounded and infiltrated the lesions. "The tumor kept growing, so they obviously were not killing it," Fidler said.

Fidler and colleagues separately introduced the drug Taxol and the PGP-resistant drug fluorouracil to cultures of metastatic breast cancer. Both drugs induced apoptosis, or programmed cell death. When the cells were collected with astrocytes, cell death dropped to levels seen when there was no drug applied to the cancer cells at all. Cultures treated with fibroblasts, another type of supportive cell, derived no protection against chemotherapy.

These results held for metastatic lung cancer and melanoma as well.

To better understand the mechanisms involved, the team cultured human breast and lung cancer cells with mouse astrocytes and fibroblasts.

Culturing either type of cancer with astrocytes increased the expression of six survival genes in the cancer cells. Additional research showed the astrocytes must be touching cancer cells to protect them, much like they physically touch neurons with one arm and tap a capillary with another arm.

Fidler and colleagues are investigating ways to inhibit astrocytes in tumors without affecting those that protect neurons. "To treat brain metastasis we must pay attention to the organ microenvironment, otherwise there is no way chemotherapy can work," Fidler said.

When surgery is warranted, en bloc removal is best

Brain metastases in the lower back portion of the brain – the posterior fossa – tend to escape irretrievably to the spinal fluid. Sawaya and colleagues at M. D. Anderson compared treatment of 379 such tumors with either surgery or noninvasive stereotactic radiosurgery. Of the 260 tumors that were surgically removed, 123 were completely intact (en bloc) and 137 were taken out in pieces.

They reported in the Journal of Neurosurgery last year that the cancer spread to the spinal fluid 6 percent of the time for those receiving the highly targeted radiation and also for those who had their tumor removed en bloc. Tumors removed piecemeal spread 14 percent of the time.

"This is the first time anybody has shown that the way you remove a brain tumor, in this case a metastasis, affects the likelihood of containing it or of spreading the tumor in the central nervous system," Sawaya said. "The good news is that surgery done en bloc does not add to that risk, which has drawn a great deal of interest in that study."

A number of important factors go into deciding whether a patient with metastatic brain tumors is a good candidate for surgery, Sawaya said.

Tumor size, location and origin are important, as are a patient's age, neurological status and general condition. The extent of metastatic cancer elsewhere in the body is crucial. "Those with evidence of extensive systemic disease don't do well," Sawaya said. Past or potential response to therapy and the number of metastases in the brain, are determining factors.

Patients used to be ineligible if they had more than one brain metastasis, but Sawaya and colleagues demonstrated in a 1993 paper that median survival of patients with two metastases removed was 14 months, identical to the survival of patients after surgery to remove only one metastasis. Now surgery can be considered for up to three metastases.

Improved techniques and better surgical guidelines have reduced surgical mortality – death from surgery, not cancer – from more than 30 percent to 2 percent over the last 50 years.

Studies show survival after surgery for melanoma, lung, renal cell, breast and colon cancer metastases ranges from a median of seven months for melanoma patients to a year for breast and lung cancer. Four studies showed that no patients with metastatic colon cancer survived for two years.

"Colon cancer goes first to the liver, then the lungs and then to the brain, so patients already have extensive cancer by the time it grows in the brain," Sawaya said.

Metastases tend to find a spot in the brain and grow without invading brain tissue. "They push on the brain, and cause swelling," Sawaya said. Before and after images of a large melanoma show the tumor, then a gap after surgery where the tumor had been, and then two years later no sign of tumor or gap.

"You take the tumor out, and the brain and white matter expand over time until you see no sign of the resected tumor," Sawaya said. The patient lived for more than five years.

Careful mapping of functional areas of the brain before surgery and new approaches that include reaching deeper tumors by going down into the folds of the brain rather than cutting through brain tissue have reduced side effects from surgery. A study of surgical results in 194 patients showed that the tumor was completely removed 94 percent of the time with neurological side effects in only 6 percent of cases.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>