Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain mapping reveals neurological basis of decision-making in rats

21.03.2013
Scientists at UC San Francisco have discovered how memory recall is linked to decision-making in rats, showing that measurable activity in one part of the brain occurs when rats in a maze are playing out memories that help them decide which way to turn. The more they play out these memories, the more likely they are to find their way correctly to the end of the maze.

In their study, reported this week in the journal Neuron, the UCSF researchers implanted electrodes directly on a region of the rat brain known as the hippocampus, which is already known to play a key role in the formation and recall of memory. This same region is active when animals are learning, and it is damaged in people who have Alzheimer's and post-traumatic stress disorder.

The study showed that when the rats paused before an upcoming choice, sometimes the hippocampus was more active and sometimes it was less active. When it was more active it did a better job of recalling memories of places the animal could go next, and the animal was more likely to go to the right place.

"We know that considering possibilities is important for decision-making, but we haven't really known how this happens in the brain," said neuroscientist Loren Frank, PhD, who led the research. Frank is an associate professor of physiology and a member of the UCSF Center for Integrative Neuroscience at UCSF.

The work builds upon several years of investigations in Frank's laboratory that have shown how activity in the hippocampus is a fundamental constituent of memory retrieval. Their recent work shows that this activity is not just about remembering the past – it is also important for thinking about the future. When the brain does a better job of thinking about future possibilities, it makes better decisions.

Next, the team wants to tease out why sometimes the hippocampus does not do a good job of playing out future options. Problems with memory and decision-making are central to age-related cognitive decline, and a deeper understanding of how this works could pave the way for interventions that make the brain work better.

The article, "Hippocampal SWR Activity Predicts Correct Decisions during the Initial Learning of an Alternation Task" is authored by Annabelle C. Singer, Margaret F. Carr, Mattias P. Karlsson, and Loren M. Frank. The work appears in the March 20, 2013 issue of the journal Neuron. After that date, the article can be accessed at: http://dx.doi.org/10.1016/j.neuron.2013.01.027

In addition to Dr. Frank, the other authors on the study are former graduate students from UCSF who are now, affiliated with the McGovern Institute for Brain Research and MIT Media Lab in Cambridge, MA; Stanford University; and the Howard Hughes Medical Institute's Janelia Farms Research Campus in Ashburn, VA.

This work was supported by the John Merck Scholars Program and the U.S. National Institutes of Health via grant #RO1MH090188 and #F31093067.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>