Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain glia cells increase their DNA content to preserve vital blood-brain barrier

16.01.2012
The blood-brain barrier is essential for maintaining the brain's stable environment—preventing entry of harmful viruses and bacteria and isolating the brain's specific hormonal and neurotransmitter activity from that in the rest of the body.

In addition to nerve cells, the brain contains glia cells that support and protect the neurons. In the fruit fly, the blood-brain boundary is made by glia joined into an envelope sealed around the nerve cells. As the brain rapidly expands during development, the glial envelope must grow correspondingly to remain intact. However, little has been known about how the blood-brain barrier maintains its integrity as the brain it protects develops.

Now Whitehead Institute scientists report that as the developing larval fruit fly brain grows by cell division, it instructs subperineurial glia (SPG) cells that form the blood-brain barrier to enlarge by creating multiple copies of their genomes in a process known as polyploidization. The researchers report their work this month in the journal Genes and Development.

"We think that this may be the same developmental strategy that's used in other contexts, where you need an outer layer of cells to maintain a seal, yet you also need the organ to grow during development," says Whitehead Member Terry Orr-Weaver.

Like the larval fruit fly's blood-brain barrier, cell layers in the human placenta and skin may employ polyploidization to respond to the need to expand while maintaining a sound boundary between the fetus and its surroundings, and the body and the outside world, respectively.

For preserving such barriers, polyploidy is ideal, as the cells forming the boundary enlarge without undergoing full cell division, a process that would break the tight junctions between cells.

In the larval fruit fly, polyploid SPG are necessary for maintaining the blood-brain barrier. When Yingdee Unhavaithaya, a postdoctoral researcher in Orr-Weaver's lab and first author of the Genes and Development article, prevented the SPG from making additional genome copies and becoming polyploid, the blood-brain barrier shattered as the brain continued to expand and the SPG was unable to accommodate its growth.

When allowed to progress naturally, polyploidy is flexible enough to accommodate even unusual brain expansion. After Unhavaithaya enlarged the brain by inducing a brain tumor, the SPG responded by increasing their ploidy and the blood-brain barrier remained unbroken.

This experiment also indicates that somehow the expanding brain mass is telling the SPG to increase their ploidy, but only as much as necessary to maintain the tight junctions between the SPG.

"It's a glimpse of communication between tissues during organogenesis," says Unhavaithaya. "We see different tissues trying to make a properly sized organ together. And one of the ways is by receiving instruction from the growing tissue so the other tissue can scale its size to properly conform to this tissue ratio for the organism."

For Orr-Weaver, Unhavaithaya's work could lead to additional exciting research.

"It has really opened up a whole new area to look at, so we can understand the mechanistic basis by which this communication happens," says Orr-Weaver, who is also an American Cancer Society professor of biology at MIT. "Does it happen at the organ level, or does it happen locally? There's really a lot to sort out."

This work was supported the Harold and Leila Mathers Charitable Foundation and the American Cancer Society.

Written by Nicole Giese Rura

Terry Orr-Weaver is a Member at Whitehead Institute for Biomedical Research, where her laboratory is located and all her research is conducted. She is also an American Cancer Society professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity"

Genes and Development, January 1, 2012

Yingdee Unhavaithaya and Terry L. Orr-Weaver

Whitehead Institute and Dept. of Biology, Massachusetts Institute of Technology, Cambridge, MA.

Nicole Giese Rura | EurekAlert!
Further information:
http://www.wi.mit.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>