Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain glia cells increase their DNA content to preserve vital blood-brain barrier

16.01.2012
The blood-brain barrier is essential for maintaining the brain's stable environment—preventing entry of harmful viruses and bacteria and isolating the brain's specific hormonal and neurotransmitter activity from that in the rest of the body.

In addition to nerve cells, the brain contains glia cells that support and protect the neurons. In the fruit fly, the blood-brain boundary is made by glia joined into an envelope sealed around the nerve cells. As the brain rapidly expands during development, the glial envelope must grow correspondingly to remain intact. However, little has been known about how the blood-brain barrier maintains its integrity as the brain it protects develops.

Now Whitehead Institute scientists report that as the developing larval fruit fly brain grows by cell division, it instructs subperineurial glia (SPG) cells that form the blood-brain barrier to enlarge by creating multiple copies of their genomes in a process known as polyploidization. The researchers report their work this month in the journal Genes and Development.

"We think that this may be the same developmental strategy that's used in other contexts, where you need an outer layer of cells to maintain a seal, yet you also need the organ to grow during development," says Whitehead Member Terry Orr-Weaver.

Like the larval fruit fly's blood-brain barrier, cell layers in the human placenta and skin may employ polyploidization to respond to the need to expand while maintaining a sound boundary between the fetus and its surroundings, and the body and the outside world, respectively.

For preserving such barriers, polyploidy is ideal, as the cells forming the boundary enlarge without undergoing full cell division, a process that would break the tight junctions between cells.

In the larval fruit fly, polyploid SPG are necessary for maintaining the blood-brain barrier. When Yingdee Unhavaithaya, a postdoctoral researcher in Orr-Weaver's lab and first author of the Genes and Development article, prevented the SPG from making additional genome copies and becoming polyploid, the blood-brain barrier shattered as the brain continued to expand and the SPG was unable to accommodate its growth.

When allowed to progress naturally, polyploidy is flexible enough to accommodate even unusual brain expansion. After Unhavaithaya enlarged the brain by inducing a brain tumor, the SPG responded by increasing their ploidy and the blood-brain barrier remained unbroken.

This experiment also indicates that somehow the expanding brain mass is telling the SPG to increase their ploidy, but only as much as necessary to maintain the tight junctions between the SPG.

"It's a glimpse of communication between tissues during organogenesis," says Unhavaithaya. "We see different tissues trying to make a properly sized organ together. And one of the ways is by receiving instruction from the growing tissue so the other tissue can scale its size to properly conform to this tissue ratio for the organism."

For Orr-Weaver, Unhavaithaya's work could lead to additional exciting research.

"It has really opened up a whole new area to look at, so we can understand the mechanistic basis by which this communication happens," says Orr-Weaver, who is also an American Cancer Society professor of biology at MIT. "Does it happen at the organ level, or does it happen locally? There's really a lot to sort out."

This work was supported the Harold and Leila Mathers Charitable Foundation and the American Cancer Society.

Written by Nicole Giese Rura

Terry Orr-Weaver is a Member at Whitehead Institute for Biomedical Research, where her laboratory is located and all her research is conducted. She is also an American Cancer Society professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity"

Genes and Development, January 1, 2012

Yingdee Unhavaithaya and Terry L. Orr-Weaver

Whitehead Institute and Dept. of Biology, Massachusetts Institute of Technology, Cambridge, MA.

Nicole Giese Rura | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>