Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain glia cells increase their DNA content to preserve vital blood-brain barrier

16.01.2012
The blood-brain barrier is essential for maintaining the brain's stable environment—preventing entry of harmful viruses and bacteria and isolating the brain's specific hormonal and neurotransmitter activity from that in the rest of the body.

In addition to nerve cells, the brain contains glia cells that support and protect the neurons. In the fruit fly, the blood-brain boundary is made by glia joined into an envelope sealed around the nerve cells. As the brain rapidly expands during development, the glial envelope must grow correspondingly to remain intact. However, little has been known about how the blood-brain barrier maintains its integrity as the brain it protects develops.

Now Whitehead Institute scientists report that as the developing larval fruit fly brain grows by cell division, it instructs subperineurial glia (SPG) cells that form the blood-brain barrier to enlarge by creating multiple copies of their genomes in a process known as polyploidization. The researchers report their work this month in the journal Genes and Development.

"We think that this may be the same developmental strategy that's used in other contexts, where you need an outer layer of cells to maintain a seal, yet you also need the organ to grow during development," says Whitehead Member Terry Orr-Weaver.

Like the larval fruit fly's blood-brain barrier, cell layers in the human placenta and skin may employ polyploidization to respond to the need to expand while maintaining a sound boundary between the fetus and its surroundings, and the body and the outside world, respectively.

For preserving such barriers, polyploidy is ideal, as the cells forming the boundary enlarge without undergoing full cell division, a process that would break the tight junctions between cells.

In the larval fruit fly, polyploid SPG are necessary for maintaining the blood-brain barrier. When Yingdee Unhavaithaya, a postdoctoral researcher in Orr-Weaver's lab and first author of the Genes and Development article, prevented the SPG from making additional genome copies and becoming polyploid, the blood-brain barrier shattered as the brain continued to expand and the SPG was unable to accommodate its growth.

When allowed to progress naturally, polyploidy is flexible enough to accommodate even unusual brain expansion. After Unhavaithaya enlarged the brain by inducing a brain tumor, the SPG responded by increasing their ploidy and the blood-brain barrier remained unbroken.

This experiment also indicates that somehow the expanding brain mass is telling the SPG to increase their ploidy, but only as much as necessary to maintain the tight junctions between the SPG.

"It's a glimpse of communication between tissues during organogenesis," says Unhavaithaya. "We see different tissues trying to make a properly sized organ together. And one of the ways is by receiving instruction from the growing tissue so the other tissue can scale its size to properly conform to this tissue ratio for the organism."

For Orr-Weaver, Unhavaithaya's work could lead to additional exciting research.

"It has really opened up a whole new area to look at, so we can understand the mechanistic basis by which this communication happens," says Orr-Weaver, who is also an American Cancer Society professor of biology at MIT. "Does it happen at the organ level, or does it happen locally? There's really a lot to sort out."

This work was supported the Harold and Leila Mathers Charitable Foundation and the American Cancer Society.

Written by Nicole Giese Rura

Terry Orr-Weaver is a Member at Whitehead Institute for Biomedical Research, where her laboratory is located and all her research is conducted. She is also an American Cancer Society professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity"

Genes and Development, January 1, 2012

Yingdee Unhavaithaya and Terry L. Orr-Weaver

Whitehead Institute and Dept. of Biology, Massachusetts Institute of Technology, Cambridge, MA.

Nicole Giese Rura | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>