Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain glia cells increase their DNA content to preserve vital blood-brain barrier

The blood-brain barrier is essential for maintaining the brain's stable environment—preventing entry of harmful viruses and bacteria and isolating the brain's specific hormonal and neurotransmitter activity from that in the rest of the body.

In addition to nerve cells, the brain contains glia cells that support and protect the neurons. In the fruit fly, the blood-brain boundary is made by glia joined into an envelope sealed around the nerve cells. As the brain rapidly expands during development, the glial envelope must grow correspondingly to remain intact. However, little has been known about how the blood-brain barrier maintains its integrity as the brain it protects develops.

Now Whitehead Institute scientists report that as the developing larval fruit fly brain grows by cell division, it instructs subperineurial glia (SPG) cells that form the blood-brain barrier to enlarge by creating multiple copies of their genomes in a process known as polyploidization. The researchers report their work this month in the journal Genes and Development.

"We think that this may be the same developmental strategy that's used in other contexts, where you need an outer layer of cells to maintain a seal, yet you also need the organ to grow during development," says Whitehead Member Terry Orr-Weaver.

Like the larval fruit fly's blood-brain barrier, cell layers in the human placenta and skin may employ polyploidization to respond to the need to expand while maintaining a sound boundary between the fetus and its surroundings, and the body and the outside world, respectively.

For preserving such barriers, polyploidy is ideal, as the cells forming the boundary enlarge without undergoing full cell division, a process that would break the tight junctions between cells.

In the larval fruit fly, polyploid SPG are necessary for maintaining the blood-brain barrier. When Yingdee Unhavaithaya, a postdoctoral researcher in Orr-Weaver's lab and first author of the Genes and Development article, prevented the SPG from making additional genome copies and becoming polyploid, the blood-brain barrier shattered as the brain continued to expand and the SPG was unable to accommodate its growth.

When allowed to progress naturally, polyploidy is flexible enough to accommodate even unusual brain expansion. After Unhavaithaya enlarged the brain by inducing a brain tumor, the SPG responded by increasing their ploidy and the blood-brain barrier remained unbroken.

This experiment also indicates that somehow the expanding brain mass is telling the SPG to increase their ploidy, but only as much as necessary to maintain the tight junctions between the SPG.

"It's a glimpse of communication between tissues during organogenesis," says Unhavaithaya. "We see different tissues trying to make a properly sized organ together. And one of the ways is by receiving instruction from the growing tissue so the other tissue can scale its size to properly conform to this tissue ratio for the organism."

For Orr-Weaver, Unhavaithaya's work could lead to additional exciting research.

"It has really opened up a whole new area to look at, so we can understand the mechanistic basis by which this communication happens," says Orr-Weaver, who is also an American Cancer Society professor of biology at MIT. "Does it happen at the organ level, or does it happen locally? There's really a lot to sort out."

This work was supported the Harold and Leila Mathers Charitable Foundation and the American Cancer Society.

Written by Nicole Giese Rura

Terry Orr-Weaver is a Member at Whitehead Institute for Biomedical Research, where her laboratory is located and all her research is conducted. She is also an American Cancer Society professor of biology at Massachusetts Institute of Technology.

Full Citation:

"Polyploidization of glia in neural development links tissue growth to blood-brain barrier integrity"

Genes and Development, January 1, 2012

Yingdee Unhavaithaya and Terry L. Orr-Weaver

Whitehead Institute and Dept. of Biology, Massachusetts Institute of Technology, Cambridge, MA.

Nicole Giese Rura | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>