Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Gene Expression Changes When Honey Bees Go The Distance

19.08.2010
Tricking honey bees into thinking they have traveled long distance to find food alters gene expression in their brains, researchers report this month. Their study, in the journal Genes, Brain and Behavior, is the first to identify distance-responsive genes.

Foraging honey bees make unique research animals in part because they communicate in a language humans can decode, said University of Illinois entomology and neuroscience professor Gene Robinson, who led the study. After a successful hunt, a forager performs a highly stylized “dance” that tells her peers what direction to go to find the food, how good it is and how far away it is. The bee does a “round dance” if the food is close to home, while a “waggle dance” indicates it is farther away.

(You can watch a video of activity in the honey bee hive, including the dances here: http://www.youtube.com/watch?v=lE-8QuBDkkw&feature=player_embedded)

The new study used an established method for altering a honey bee’s perception of distance as she flew through a tunnel to gather food. Vertical stripes or a busy pattern on the tunnel walls can trick a bee into thinking she is traveling a greater distance, while horizontal stripes or a sparse pattern indicate a shorter distance – even though the tunnels are the exact same length. At the end of the flight, a researcher watches the honey bee dance to find out how far she thinks she flew.

“This is a great example of what you can learn if you are able to manipulate an animal to be able to tell you what it’s thinking,” Robinson said.

Using microarray analysis, which tracks the activity of thousands of genes at once, the researchers compared gene expression in the brains of bees that thought they had traveled shorter or longer distances. The team focused on two brain regions: the optic lobes, which process visual information, and the mushroom bodies, which integrate sensory information and have been implicated in learning and memory.

Some bees (labeled S®S bees) traveled the “short” distance repeatedly to get to the food, while others (the S®L bees) trained on the “short” distance and then were switched to the “long” distance tunnel. Brain gene expression differed between the groups. A total of 29 annotated genes (for which sequence, location in the genome and function are known) were “differentially regulated between the S®L and S®S bees, either in the optic lobes, mushroom bodies, or both,” the researchers wrote.

Surprisingly, the patterns of gene expression (which genes were turned up, down, on or off in response to the experience) were similar in both brain regions, Robinson said, suggesting that similar molecular pathways are involved in responding to distance information in different parts of the brain. The fact that gene activity changes in the mushroom bodies may indicate that some of the information is encoded in memory, he said, “which makes sense because bees need to remember their flight distance long enough to communicate it to hive-mates by dance language.”

This study adds a new dimension to the ongoing exploration of the socially responsive genome, Robinson said. The genome is not a static blueprint for life, as was once believed, he said. “Instead we see how responsive the genome is to environmental stimuli and especially socially relevant stimuli. Here is another piece of the world that the genome is responding to that we didn’t know about before.”

This study was supported by the National Science Foundation and the Illinois Sociogenomics Initiative.

Editor’s note: Gene Robinson directs the Neuroscience Program and is a theme leader at the Institute for Genomic Biology at Illinois. To contact Robinson, call 217-265-0309; e-mail generobi@illinois.edu. The paper, "Distance-responsive genes found in dancing honey bees," is available online.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>