Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Gene Expression Changes When Honey Bees Go The Distance

19.08.2010
Tricking honey bees into thinking they have traveled long distance to find food alters gene expression in their brains, researchers report this month. Their study, in the journal Genes, Brain and Behavior, is the first to identify distance-responsive genes.

Foraging honey bees make unique research animals in part because they communicate in a language humans can decode, said University of Illinois entomology and neuroscience professor Gene Robinson, who led the study. After a successful hunt, a forager performs a highly stylized “dance” that tells her peers what direction to go to find the food, how good it is and how far away it is. The bee does a “round dance” if the food is close to home, while a “waggle dance” indicates it is farther away.

(You can watch a video of activity in the honey bee hive, including the dances here: http://www.youtube.com/watch?v=lE-8QuBDkkw&feature=player_embedded)

The new study used an established method for altering a honey bee’s perception of distance as she flew through a tunnel to gather food. Vertical stripes or a busy pattern on the tunnel walls can trick a bee into thinking she is traveling a greater distance, while horizontal stripes or a sparse pattern indicate a shorter distance – even though the tunnels are the exact same length. At the end of the flight, a researcher watches the honey bee dance to find out how far she thinks she flew.

“This is a great example of what you can learn if you are able to manipulate an animal to be able to tell you what it’s thinking,” Robinson said.

Using microarray analysis, which tracks the activity of thousands of genes at once, the researchers compared gene expression in the brains of bees that thought they had traveled shorter or longer distances. The team focused on two brain regions: the optic lobes, which process visual information, and the mushroom bodies, which integrate sensory information and have been implicated in learning and memory.

Some bees (labeled S®S bees) traveled the “short” distance repeatedly to get to the food, while others (the S®L bees) trained on the “short” distance and then were switched to the “long” distance tunnel. Brain gene expression differed between the groups. A total of 29 annotated genes (for which sequence, location in the genome and function are known) were “differentially regulated between the S®L and S®S bees, either in the optic lobes, mushroom bodies, or both,” the researchers wrote.

Surprisingly, the patterns of gene expression (which genes were turned up, down, on or off in response to the experience) were similar in both brain regions, Robinson said, suggesting that similar molecular pathways are involved in responding to distance information in different parts of the brain. The fact that gene activity changes in the mushroom bodies may indicate that some of the information is encoded in memory, he said, “which makes sense because bees need to remember their flight distance long enough to communicate it to hive-mates by dance language.”

This study adds a new dimension to the ongoing exploration of the socially responsive genome, Robinson said. The genome is not a static blueprint for life, as was once believed, he said. “Instead we see how responsive the genome is to environmental stimuli and especially socially relevant stimuli. Here is another piece of the world that the genome is responding to that we didn’t know about before.”

This study was supported by the National Science Foundation and the Illinois Sociogenomics Initiative.

Editor’s note: Gene Robinson directs the Neuroscience Program and is a theme leader at the Institute for Genomic Biology at Illinois. To contact Robinson, call 217-265-0309; e-mail generobi@illinois.edu. The paper, "Distance-responsive genes found in dancing honey bees," is available online.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>