Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain epigenome changes from birth to adolescence

Published in Science

Experience of parents with their children and teachers with their students demonstrate how kids change their behaviours and knowledge from infancy to adolescence. Until now, little was known of the causes that could lead to these changes.

Today, an article published in Science in collaboration with the group of Manel Esteller, Director of Epigenetics and Cancer Biology Biomedical Research Institute (IDIBELL), ICREA researcher and Professor of Genetics at the University of Barcelona, gives us an important clue to understanding this process.

Researchers have discovered that people's frontal cortex (the part of the brain responsible for the conduct and the acquisition of new information) experiences a significant change from birth to the end of adolescence. The epigenome is transformed.

The study analyzes the epigenome of newborns, teenagers aged 16, and adults aged 25 and 50 in the United States and in Catalonia (Spain).


Epigenome is the set of chemical signals responsible for turning on or off genes in our DNA. The discovery published in Science shows that one of these epigenetic signals, methylation of genetic material, is progressively increased until the end of adolescence and entry into adulthood.

"The results of the study show that DNA methylation has a key role in shaping the communication spaces between neurons (synapses)", explains Esteller. "The brain is divided into white matter (glial) and gray matter (neurons) with several cell types with different functions. DNA methylation patterns distinguish genes with cell-type specific activity. Even in the gray matter, there are cell subtypes such as pyramidal neurons and GABA neurotransmitter producers that have specific subpatterns of DNA methylation."

"In addition, DNA methylation of neurons is different from the rest of the cells in our body. If normal is called 5-mCG, this, in the bran, is called 5-MCH: this is like putting an open or closed accent to a word, in this case a gene to change its meaning" explains Esteller.

This finding could have a profound importance in the knowledge of brain's biology because besides explaining the plasticity of this organ when learning and living experiences, it could be decisive to understand the causes of altered behaviours and psychiatric diseases. Now, we must investigate whether minor alterations in the program of DNA methylation during early postnatal development could be associated to neurodevelopmental disorders such as autism or schizophrenia.

About Us

The Bellvitge Biomedical Research Institute (IDIBELL) is a research center created in 2004 and it is participated by the Bellvitge University Hospital, the Catalan Institute of Health, the Catalan Institute of Oncology, and the University of Barcelona. IDIBELL is located at Biopol'H at L'Hospitalet de Llobregat and is member of the Health Universtitat de Barcelona Campus.

Article reference

Lister R, Mukame EA, Nery JR, Urich M, Puddifoot CA, Johnson N, Lucero J, Huang N, Zaman S, Schultz MD, Tonti-Filippini J, Yu M, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR. Dynamic epigenomic reconfiguration during mammalian brain development. Science, July 4th, 2013.

Arantxa Mena | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Microbe hunters discover long-sought-after iron-munching microbe
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>