Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain epigenome changes from birth to adolescence

05.07.2013
Published in Science

Experience of parents with their children and teachers with their students demonstrate how kids change their behaviours and knowledge from infancy to adolescence. Until now, little was known of the causes that could lead to these changes.

Today, an article published in Science in collaboration with the group of Manel Esteller, Director of Epigenetics and Cancer Biology Biomedical Research Institute (IDIBELL), ICREA researcher and Professor of Genetics at the University of Barcelona, gives us an important clue to understanding this process.

Researchers have discovered that people's frontal cortex (the part of the brain responsible for the conduct and the acquisition of new information) experiences a significant change from birth to the end of adolescence. The epigenome is transformed.

The study analyzes the epigenome of newborns, teenagers aged 16, and adults aged 25 and 50 in the United States and in Catalonia (Spain).

Epigenome

Epigenome is the set of chemical signals responsible for turning on or off genes in our DNA. The discovery published in Science shows that one of these epigenetic signals, methylation of genetic material, is progressively increased until the end of adolescence and entry into adulthood.

"The results of the study show that DNA methylation has a key role in shaping the communication spaces between neurons (synapses)", explains Esteller. "The brain is divided into white matter (glial) and gray matter (neurons) with several cell types with different functions. DNA methylation patterns distinguish genes with cell-type specific activity. Even in the gray matter, there are cell subtypes such as pyramidal neurons and GABA neurotransmitter producers that have specific subpatterns of DNA methylation."

"In addition, DNA methylation of neurons is different from the rest of the cells in our body. If normal is called 5-mCG, this, in the bran, is called 5-MCH: this is like putting an open or closed accent to a word, in this case a gene to change its meaning" explains Esteller.

This finding could have a profound importance in the knowledge of brain's biology because besides explaining the plasticity of this organ when learning and living experiences, it could be decisive to understand the causes of altered behaviours and psychiatric diseases. Now, we must investigate whether minor alterations in the program of DNA methylation during early postnatal development could be associated to neurodevelopmental disorders such as autism or schizophrenia.

About Us

The Bellvitge Biomedical Research Institute (IDIBELL) is a research center created in 2004 and it is participated by the Bellvitge University Hospital, the Catalan Institute of Health, the Catalan Institute of Oncology, and the University of Barcelona. IDIBELL is located at Biopol'H at L'Hospitalet de Llobregat and is member of the Health Universtitat de Barcelona Campus.

Article reference

Lister R, Mukame EA, Nery JR, Urich M, Puddifoot CA, Johnson N, Lucero J, Huang N, Zaman S, Schultz MD, Tonti-Filippini J, Yu M, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR. Dynamic epigenomic reconfiguration during mammalian brain development. Science, July 4th, 2013.

Arantxa Mena | EurekAlert!
Further information:
http://www.idibell.cat

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>