Three Brain Diseases Linked by Toxic Form of Same Neural Protein

The protein, called Elk-1, was found in clumps of misshaped proteins that are the hallmarks of Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease.

“These results suggest a molecular link between the presence of inclusions and neuronal loss that is shared across a spectrum of neurodegenerative disease,” notes senior author, James Eberwine, PhD, co-director of the Penn Genome Frontiers Institute and the Elmer Holmes Bobst Professor of Pharmacology. “Identifying these links within the diseased microenvironment will open up novel avenues for therapeutic intervention. For example it is reasonable to now ask, “Is this molecule a possible new biomarker for these neurodegenerative diseases?” says Eberwine.

Eberwine, co-first authors Anup Sharma, an MD-PhD student, Jai-Yoon Sul, PhD, Assistant Professor of Pharmacology, both from Penn, Linda M. Callahan, PhD, from the University of Rochester Medical Center, and colleagues, report their findings this week in the online journal PLoS One.

Neurodegenerative diseases are characterized by a number of features including the protein clumps called inclusions; decline of nerve-cell synapses; and the selective loss of the nerve cells themselves.

Elk-1 resides within multiple brain areas, both in the nucleus and the cell body. Interestingly, when it is present in extensions of nerve cells called dendrites, it can initiate the death of that neuron. With this in mind the team assessed whether there is a specific dendrite form of Elk-1 or a modified form called phospho-Elk-1 (pElk-1) that might be associated with a spectrum of human neurodegenerative diseases.

First, they determined the importance of this specific modification of Elk-1 on its ability to initiate regionalized cell death. This was accomplished through site-directed mutations and insertion of the mutated Elk-1 mRNA into dendrites and cell bodies. These studies showed that a specific position on the protein could be modified in the dendrite to cause neuronal cell death.

Next, they screened tissue from a post-mortem human brain bank, specifically samples representative of the three major neurodegenerative diseases, to look for higher levels of the toxic form of Elk-1 protein and compared their findings to levels in brain tissue from age-matched control samples.

By comparing the immunoreactivity for the pElk-1 protein in diseased tissue versus control tissue, they found that pElk-1 strongly associates with the pathological markers present in cases of Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease versus disease-free tissue.

The team hopes to next expand these preliminary findings to a larger sample size of tissues from neurodegenerative disease banks, and to screen blood samples from affected individuals to assess the biomarker capacity of this form of Elk-1 and to use animal models of these illnesses to assess the biological role of this modified form of Elk-1 in the disease processes. They also will be looking for other sites of toxic changes on the Elk-1 protein and will look in other disease tissue for modified Elk-1.

The study was funded by the National Institute on Aging and the National Institute of Mental Health.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #3 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.

Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.

Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Media Contact

Karen Kreeger EurekAlert!

More Information:

http://www.uphs.upenn.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors