Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three Brain Diseases Linked by Toxic Form of Same Neural Protein

03.02.2010
For the first time, researchers from the University of Pennsylvania School of Medicine have found that three different degenerative brain disorders are linked by a toxic form of the same protein.

The protein, called Elk-1, was found in clumps of misshaped proteins that are the hallmarks of Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease.

“These results suggest a molecular link between the presence of inclusions and neuronal loss that is shared across a spectrum of neurodegenerative disease,” notes senior author, James Eberwine, PhD, co-director of the Penn Genome Frontiers Institute and the Elmer Holmes Bobst Professor of Pharmacology. “Identifying these links within the diseased microenvironment will open up novel avenues for therapeutic intervention. For example it is reasonable to now ask, “Is this molecule a possible new biomarker for these neurodegenerative diseases?” says Eberwine.

Eberwine, co-first authors Anup Sharma, an MD-PhD student, Jai-Yoon Sul, PhD, Assistant Professor of Pharmacology, both from Penn, Linda M. Callahan, PhD, from the University of Rochester Medical Center, and colleagues, report their findings this week in the online journal PLoS One.

Neurodegenerative diseases are characterized by a number of features including the protein clumps called inclusions; decline of nerve-cell synapses; and the selective loss of the nerve cells themselves.

Elk-1 resides within multiple brain areas, both in the nucleus and the cell body. Interestingly, when it is present in extensions of nerve cells called dendrites, it can initiate the death of that neuron. With this in mind the team assessed whether there is a specific dendrite form of Elk-1 or a modified form called phospho-Elk-1 (pElk-1) that might be associated with a spectrum of human neurodegenerative diseases.

First, they determined the importance of this specific modification of Elk-1 on its ability to initiate regionalized cell death. This was accomplished through site-directed mutations and insertion of the mutated Elk-1 mRNA into dendrites and cell bodies. These studies showed that a specific position on the protein could be modified in the dendrite to cause neuronal cell death.

Next, they screened tissue from a post-mortem human brain bank, specifically samples representative of the three major neurodegenerative diseases, to look for higher levels of the toxic form of Elk-1 protein and compared their findings to levels in brain tissue from age-matched control samples.

By comparing the immunoreactivity for the pElk-1 protein in diseased tissue versus control tissue, they found that pElk-1 strongly associates with the pathological markers present in cases of Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease versus disease-free tissue.

The team hopes to next expand these preliminary findings to a larger sample size of tissues from neurodegenerative disease banks, and to screen blood samples from affected individuals to assess the biomarker capacity of this form of Elk-1 and to use animal models of these illnesses to assess the biological role of this modified form of Elk-1 in the disease processes. They also will be looking for other sites of toxic changes on the Elk-1 protein and will look in other disease tissue for modified Elk-1.

The study was funded by the National Institute on Aging and the National Institute of Mental Health.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #3 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.

Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.

Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>