Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This is your brain on Cryptococcus: Pathogenic fungus loves your brain sugar

06.04.2010
Highly dangerous Cryptococcus fungi love sugar and will consume it anywhere because it helps them reproduce. In particular, they thrive on a sugar called inositol which is abundant in the human brain and spinal cord.

To borrow inositol from a person's brain, the fungi have an expanded set of genes that encode for sugar transporter molecules. While a typical fungus has just two such genes, Cryptococcus have almost a dozen, according to Joseph Heitman, M.D., Ph.D., chairman of the Duke Department of Molecular Genetics and Microbiology.

"Inositol is abundant in the human brain and in the fluid that bathes it (cerebral spinal fluid), which may be why this fungus has a predilection to infect the brain and cause meningitis," Heitman said. "It has the machinery to efficiently move sugar molecules inside of its cells and thrive."

The findings on Cryptococcus genes were published online this week in the inaugural issue of mBio, a new open access microbiology journal.

This specialized brain attack likely occurred because these fungi adapted to grow on plants in the wild, which also are abundant in inositol, said lead author Chaoyang Xue, Ph.D., formerly a postdoctoral research associate in the Heitman lab and now an assistant professor at the Public Health Research Institute at the University of Medicine and Dentistry of New Jersey (UMDNJ). "In fact, this pathogenic yeast has more inositol transporters than all other fungi we have compared it to in the fungal kingdom, based on what we know from genome research."

The team of researchers discovered that inositol stimulates Cryptococcus to sexually reproduce. "A connection between the high concentration of free inositol and fungal infection in the human brain is suggested by our studies," Xue said. "Establishing such a connection could open up a new way to control this deadly fungus."

Cryptococcus' love for sugar may also be a fungal Achilles Heel, Heitman said. "Now scientists may be able to target the fungi by developing ways to put them on the fungal equivalent of an Atkin's low-carbohydrate diet so they will stop multiplying." He said researchers could use the new findings to devise different types of strategies to block Cryptococcus infections.

These studies will be reported in the inaugural issue mBio, which will be launched in May by the American Society of Microbiology as an online journal that spans all areas of microbiology.

Other authors include Lydia Chen and Wenjun Li of the Duke Department of Molecular Genetics and Microbiology; Tongbao Liu of the Public Health Research Institute, University of Medicine and Dentistry of New Jersey; Iris Liu and James Kronstrad of Michael Smith Laboratories, University of British Columbia; and Andreas Seyfang of the Department of Molecular Medicine at the University of South Florida.

This work was supported by National Institute of Health/National Institute of Allergy and Infectious Disease grants. This work was also supported by the new Investigator institutional start-up fund from UMDNJ.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>