Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the brain communicates

24.02.2012
An important mechanism by which the human brain hemispheres communicate with each other has been discovered by a team of researchers from Berlin and the University of Bern.

The findings, which appear in the current issue of the journal Science, provide new insights into nerve cell communication in the brain that could also play a role in stroke.


Nerve cells of both hemispheres in the brain have to communicate with each other so that the body can perform certain functions. Photo: Philipp Mergenthaler

On the way to the brain, nerve pathways in the human body cross each other. As a result, stimuli are processed in the opposite hemisphere of the brain. For example, if someone touches our right hand, the stimulus is received in the left half of the brain.

However, both halves of the brain have to coordinate their activities. Since some functions, such as language, are strongly pronounced in only one half of the brain, their signals always have to be communicated to the other half. This is even more obvious in daily activities such coordinating the hands or feet, which requires very precise communication between both brain hemispheres. The signals that reach the brain hemispheres are sent via a massive nerve pathway called the corpus callosum from one half of the cerebral cortex to the other.

The research group of Matthew Larkum of the Cluster of Excellence NeuroCure at the Charité – Universitätsmedizin Berlin and Humboldt-Universität zu Berlin investigates the mechanisms in the brain controlling neuron activity in the cerebral cortex. In their current study in cooperation with the University of Bern, the researchers focused on the processing of tactile sensations. To do this Larkum and his team used a range of methods such as intracellular measurements of single nerve cells in the intact brain and various imaging techniques during the sensory stimulation of the hind paw of a rat.

The scientists discovered that stimulating the right and left paws of the rat has a relatively slow, nearly half-second-long sustained inhibitory effect on nerve cell activity. „That is very slow“, notes Larkum. „Normally, signal transmission happens much faster. For that reason, we wanted to find out which circuit of nerves underlies this mechanism and identify the cellular communication pathways,“ he further explains.

The researchers were able to do this with the help of a new technology called optogenetics, which makes it possible to stimulate specific nerves with light. The researchers could show that nerve fibers coming out of the opposite hemisphere activate a special group of local inhibitory nerve cells. These nerve cells in turn activate slow-acting receptors that lead to lower activity in the other nerve cells of the same brain hemisphere.

For stroke research in particular, these findings could be an additional building block in the development of new therapies, as this mechanism plays an important role in the disease. However, communication between the brain hemispheres in the cerebral cortex is crucial not only in stroke damage but also for a range of cognitive abilities, which is why the results of this study could have far-reaching impact.

NeuroCure is a Cluster of Excellence at the Charité – Universitätsmedizin Berlin funded as part of the Excellence Initiative of the German federal and state governments. The focus of this interdisciplinary research alliance is on translating results from basic neuroscience research into clinical application. A better understanding of underlying disease mechanisms contributes to developing effective treatments for neurological diseases such as stroke, multiple sclerosis and epilepsy.

In addition to the Charité, NeuroCure partners include the Humboldt-Universität zu Berlin, Freie Universität Berlin, Max Delbrück Center for Molecular Medicine (MDC), Leibniz Institute for Molecular Pharmacology (FMP) and Deutsches Rheuma-Forschungszentrum (DRFZ).

Selected publications:

Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME (2012) The cellular basis of GABAB-mediated interhemispheric inhibition. Science In press.

Kontakt:
Prof. Dr. Matthew Larkum
Neuroscience Research Center
Charité – Universitätsmedizin Berlin
Tel: +49 30 450 528152
Email: matthew.larkum@gmail.com

Constanze Haase | idw
Further information:
http://www.hu-berlin.de/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>