Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the brain communicates

24.02.2012
An important mechanism by which the human brain hemispheres communicate with each other has been discovered by a team of researchers from Berlin and the University of Bern.

The findings, which appear in the current issue of the journal Science, provide new insights into nerve cell communication in the brain that could also play a role in stroke.


Nerve cells of both hemispheres in the brain have to communicate with each other so that the body can perform certain functions. Photo: Philipp Mergenthaler

On the way to the brain, nerve pathways in the human body cross each other. As a result, stimuli are processed in the opposite hemisphere of the brain. For example, if someone touches our right hand, the stimulus is received in the left half of the brain.

However, both halves of the brain have to coordinate their activities. Since some functions, such as language, are strongly pronounced in only one half of the brain, their signals always have to be communicated to the other half. This is even more obvious in daily activities such coordinating the hands or feet, which requires very precise communication between both brain hemispheres. The signals that reach the brain hemispheres are sent via a massive nerve pathway called the corpus callosum from one half of the cerebral cortex to the other.

The research group of Matthew Larkum of the Cluster of Excellence NeuroCure at the Charité – Universitätsmedizin Berlin and Humboldt-Universität zu Berlin investigates the mechanisms in the brain controlling neuron activity in the cerebral cortex. In their current study in cooperation with the University of Bern, the researchers focused on the processing of tactile sensations. To do this Larkum and his team used a range of methods such as intracellular measurements of single nerve cells in the intact brain and various imaging techniques during the sensory stimulation of the hind paw of a rat.

The scientists discovered that stimulating the right and left paws of the rat has a relatively slow, nearly half-second-long sustained inhibitory effect on nerve cell activity. „That is very slow“, notes Larkum. „Normally, signal transmission happens much faster. For that reason, we wanted to find out which circuit of nerves underlies this mechanism and identify the cellular communication pathways,“ he further explains.

The researchers were able to do this with the help of a new technology called optogenetics, which makes it possible to stimulate specific nerves with light. The researchers could show that nerve fibers coming out of the opposite hemisphere activate a special group of local inhibitory nerve cells. These nerve cells in turn activate slow-acting receptors that lead to lower activity in the other nerve cells of the same brain hemisphere.

For stroke research in particular, these findings could be an additional building block in the development of new therapies, as this mechanism plays an important role in the disease. However, communication between the brain hemispheres in the cerebral cortex is crucial not only in stroke damage but also for a range of cognitive abilities, which is why the results of this study could have far-reaching impact.

NeuroCure is a Cluster of Excellence at the Charité – Universitätsmedizin Berlin funded as part of the Excellence Initiative of the German federal and state governments. The focus of this interdisciplinary research alliance is on translating results from basic neuroscience research into clinical application. A better understanding of underlying disease mechanisms contributes to developing effective treatments for neurological diseases such as stroke, multiple sclerosis and epilepsy.

In addition to the Charité, NeuroCure partners include the Humboldt-Universität zu Berlin, Freie Universität Berlin, Max Delbrück Center for Molecular Medicine (MDC), Leibniz Institute for Molecular Pharmacology (FMP) and Deutsches Rheuma-Forschungszentrum (DRFZ).

Selected publications:

Palmer LM, Schulz JM, Murphy SC, Ledergerber D, Murayama M, Larkum ME (2012) The cellular basis of GABAB-mediated interhemispheric inhibition. Science In press.

Kontakt:
Prof. Dr. Matthew Larkum
Neuroscience Research Center
Charité – Universitätsmedizin Berlin
Tel: +49 30 450 528152
Email: matthew.larkum@gmail.com

Constanze Haase | idw
Further information:
http://www.hu-berlin.de/

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>