Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain biology tied to social reorientation during entry to adolescence

24.04.2013
fMRI shows unique brain regions are increasingly devoted to social self-evaluations during puberty

A specific region of the brain is in play when children consider their identity and social status as they transition into adolescence -- that often-turbulent time of reaching puberty and entering middle school, says a University of Oregon psychologist.

In a study of 27 neurologically typical children who underwent functional magnetic resonance imaging (fMRI) at ages 10 and 13, activity in the brain's ventromedial prefrontal cortex increased dramatically when the subjects responded to questions about how they view themselves.

The findings, published in the April 24 issue of the Journal of Neuroscience, confirm previous findings that specific brain networks support self-evaluations in the growing brain, but, more importantly, provide evidence that basic biology may well drive some of these changes, says Jennifer H. Pfeifer, professor of psychology and director of the psychology department's Developmental Social Neuroscience Lab.

"This is a longitudinal fMRI study, which is still relatively uncommon," Pfeifer said. "It suggests a link between neural responses during self-evaluative processing in the social domain, and pubertal development. This provides a rare piece of empirical evidence in humans, rather than animal models, that supports the common theory that adolescents are biologically driven to go through a social reorientation."

Participants were scanned for about seven minutes at each visit. They responded to a series of attributes tied to social or academic domains -- social ones such as "I am popular" or "I wish I had more friends" and academic ones such as "I like to read just for fun" or "Writing is so boring." Social and academic evaluations were made about both the self and a familiar fictional character, Harry Potter.

In previous research, Pfeifer had found that a more dorsal region of the medial prefrontal cortex was more responsive in 10-year-old children during self-evaluations, when they were compared to adults. The new study, she said, provides a more detailed picture of how the brain supports self-development by looking at change within individuals.

The fMRI analyses found it was primarily the social self-evaluations that triggered significant increases over time in blood-oxygen levels, which fMRI detects, in the ventral medial prefrontal cortex. Additionally, these increases were strongest in children who experienced the most pubertal development over the three-year study period, for both girls and boys. Increases during academic self-evaluations were at best marginal. Whole-brain analyses found no other areas of the brain had significant increases or decreases in activity related to pubertal development.

"Neural changes in the social domain were more robust," Pfeifer said. "Increased responses in this one region of the brain from age 10 to 13 were very evident in social self-evaluations, but not academic ones. This pattern is consistent with the enormous importance that most children entering adolescence place on their peer relationships and social status, compared to the relatively diminished value often associated with academics during this transition."

In youth with autism spectrum disorders, this specialized response in ventral medial prefrontal cortex is missing, she added, citing a paper she co-authored in the February 2013 issue of the Journal of Autism and Developmental Disorders and a complementary study led by Michael V. Lombardo, University of Cambridge, in the February 2010 issue of the journal Brain. The absence of this typical effect, Pfeifer said, might be related to the challenges these individuals often face in both self-understanding and social relations.

"Dr. Pfeifer's research examining self-evaluations during adolescence adds significantly to the intricate puzzle of this turbulent age period," said Kimberly Andrews Espy, vice president for research and innovation and dean of the graduate school. "Researchers at the University of Oregon are piecing together how both biology and the environment dynamically and interactively support healthy social development."

National Institutes of Health grants F31MH075299, L40HD059442 and L40MH087356 to Pfeifer primarily funded the research. Other support came from the Santa Fe Institute Consortium, Brain Mapping Medical Research Organization, Brain Mapping Support Foundation, Pierson-Lovelace Foundation, Ahmanson Foundation, Tamkin Foundation, Jennifer Jones-Simon Foundation, Capital Group Companies Charitable Foundation, Robson Family, William M. and Linda R. Dietel Philanthropic Fund at the Northern Piedmont Community Foundation, Northstar Fund and the NIH National Center for Research Resources (grants RR12169, RR13642 and RR00865).

Co-authors with Pfeifer on the new study in the Journal of Neuroscience were: UO psychology graduate students Lauren E. Kahn, Junaid S. Merchant and Shannon J. Peake; Kim Veroude, a visiting researcher and graduate student from VU University Amsterdam, The Netherlands; Carrie L. Masten of Vanderbilt University in Tennessee; Matthew D. Lieberman of the University of California, Los Angeles; John C. Mazziotta, director of the Ahmanson-Lovelace Brain Mapping Center; and Mirella Dapretto of the Ahmanson-Lovelace Brain Mapping Center and UCLA Center for Culture, Brain & Development.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Source: Jennifer H. Pfeifer, assistant professor of psychology, 541-346-1984, jpfeifer@uoregon.edu

Links:

Pfeifer faculty page: http://psychweb.uoregon.edu/people/pfeifer-jennifer
Psychology Department: http://psychweb.uoregon.edu/
Developmental Social Neuroscience Lab: http://dsn.uoregon.edu/
Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience
UO Science on Twitter: http://twitter.com/UO_Research
More UO Science/Research News: http://uoresearch.uoregon.edu
Note: The University of Oregon is equipped with an on-campus television studio with satellite uplink capacity, and a radio studio with an ISDN phone line for broadcast-quality radio interviews. Call the Media Contact above to begin the process.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>