Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From the Brain of a Locust ...

30.11.2010
TAU researcher takes an unorthodox route to understanding the human neurosystem

In the human brain, mechanical stress — the amount of pressure applied to a particular area — requires a delicate balance. Just the right force keeps neurons together and functioning as a system within the body, and proper nerve function is dependent on this tension.

Now researchers at Tel Aviv University say that mechanical stress plays an even more important role than medical science previously believed. Their research has the potential to tell us more than ever before about the form and function of neuronal systems, including the human brain. And they've used the common locust to prove it.

Prof. Amir Ayali of Tel Aviv University's Department of Zoology, with Prof. Yael Hanein of the School of Electrical Engineering and Prof. Eshel Ben-Jacob of the Department of Physics, has successfully cultured cells taken from the desert locust to delve deeper into the workings of the mammalian neurosystem. Their most recent discovery, he says, is that mechanical stress plays a pivotal role not only in the development of the brain, but also its function.

Recently published in several journals including Biophysical Journal and Nanotechnology, this research demonstrates that mechanical stress is instrumental in several key phenomena in neuronal development. Once a neuron has developed, explains Prof. Ayali, it is attracted to and then attaches to another neuron, which pulls it to the appropriate place within the neurosystem. "This tension is crucial for making the right connections," he says.

A neuron system in a dish

According to Prof. Ayali, insect cells provide a unique window into the world of neurons because they're easier to work with than human cells. Large enough to culture, Prof. Ayali and his fellow researchers harvested insect neurons and allowed them to regenerate, then built an in vitro nervous system in a dish. The team was then able to follow each single cell optically, watching how they regenerated and recording their electrical activity.

Most importantly, the team was able to observe the neurons form a network. A key feature, Prof. Ayali says, is mechanical tension. As the neurosystem develops, some cells are eliminated, while others are stabilized and preserved. Cells that successfully connect with one another maintain this connection through mechanical stress. This tension draws cells to their destined locations throughout the neurosystem. As neurons develop, they migrate to the appropriate location in the body, and it's mechanical stress that draws them there.

A meeting of the minds

Although the researchers' choice of insect cells for their investigation is unorthodox, Prof. Ayali says that the benefits are tremendous. The cells are basic enough to be applicable to any system, including the human neurosystem, he notes. If it were not for the large size and low density that insect cells provide, the team would not be able to follow individual cells and track the connections they make. "We're looking at simple phenomena that apply generally," he says. "The development from single cells to groups of clusters is common to every kind of neuron."

The research is unique in more ways than one. Prof. Ayali emphasizes that this project exhibits a truly interdisciplinary approach to neuroscience. The project includes researchers from numerous scientific fields, including zoology, electrical engineering and physics.

Keep up with the latest AFTAU news on Twitter: http://www.twitter.com/AFTAUnews

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Brain Locust human brain human cell mechanical stress single cell

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>